/* mtst.c Consistency tests for math functions. To get strict rounding rules on a 386 or 68000 computer, define SETPREC to 1. With NTRIALS=10000, the following are typical results for IEEE double precision arithmetic. Consistency test of math functions. Max and rms relative errors for 10000 random arguments. x = cbrt( cube(x) ): max = 0.00E+00 rms = 0.00E+00 x = atan( tan(x) ): max = 2.21E-16 rms = 3.27E-17 x = sin( asin(x) ): max = 2.13E-16 rms = 2.95E-17 x = sqrt( square(x) ): max = 0.00E+00 rms = 0.00E+00 x = log( exp(x) ): max = 1.11E-16 A rms = 4.35E-18 A x = tanh( atanh(x) ): max = 2.22E-16 rms = 2.43E-17 x = asinh( sinh(x) ): max = 2.05E-16 rms = 3.49E-18 x = acosh( cosh(x) ): max = 1.43E-15 A rms = 1.54E-17 A x = log10( exp10(x) ): max = 5.55E-17 A rms = 1.27E-18 A x = pow( pow(x,a),1/a ): max = 7.60E-14 rms = 1.05E-15 x = cos( acos(x) ): max = 2.22E-16 A rms = 6.90E-17 A */ /* Cephes Math Library Release 2.8: June, 2000 Copyright 1984, 1987, 1988, 2000 by Stephen L. Moshier */ #include #include #include "mconf.h" #ifndef NTRIALS #define NTRIALS 10000 #endif /* C9X spells lgam lgamma. */ #define GLIBC2 0 #define GLIBC2r1 0 #define SETPREC 1 #define STRTST 0 #define WTRIALS (NTRIALS/5) #if GLIBC2 double PI = 3.141592653589793238462643; double PIO2 = 3.141592653589793238462643 * 0.5; double MAXLOG = 7.09782712893383996732224E2; #else extern double PI; extern double PIO2; extern double MAXLOG; #endif extern double MINLOG; /* define MINLOG -170.0 define MAXLOG +170.0 define PI 3.14159265358979323846 define PIO2 1.570796326794896619 */ #ifdef ANSIPROT extern double fabs ( double ); extern double sqrt ( double ); extern double cbrt ( double ); extern double exp ( double ); extern double log ( double ); extern double exp10 ( double ); extern double log10 ( double ); extern double tan ( double ); extern double atan ( double ); extern double sin ( double ); extern double asin ( double ); extern double cos ( double ); extern double acos ( double ); extern double pow ( double, double ); extern double tanh ( double ); extern double atanh ( double ); extern double sinh ( double ); extern double asinh ( double x ); extern double cosh ( double ); extern double acosh ( double ); extern double gamma ( double ); extern double lgam ( double ); extern double jn ( int, double ); extern double yn ( int, double ); extern double ndtr ( double ); extern double ndtri ( double ); extern double stdtr ( int, double ); extern double stdtri ( int, double ); extern double ellpe ( double ); extern double ellpk ( double ); #else double fabs(), sqrt(), cbrt(), exp(), log(); double exp10(), log10(), tan(), atan(); double sin(), asin(), cos(), acos(), pow(); double tanh(), atanh(), sinh(), asinh(), cosh(), acosh(); double gamma(), lgam(), jn(), yn(), ndtrl(), ndtril(); double stdtrl(), stdtril(), ellpel(), ellpkl(); #endif #if GLIBC2 extern double lgamma (double); extern double tgamma ( double ); #endif #if SETPREC int dprec(); #endif int drand(); /* void exit(); */ /* int printf(); */ /* Provide inverses for square root and cube root: */ double square(x) double x; { return( x * x ); } double cube(x) double x; { return( x * x * x ); } /* lookup table for each function */ struct fundef { char *nam1; /* the function */ double (*name )(); char *nam2; /* its inverse */ double (*inv )(); int nargs; /* number of function arguments */ int tstyp; /* type code of the function */ long ctrl; /* relative error flag */ double arg1w; /* width of domain for 1st arg */ double arg1l; /* lower bound domain 1st arg */ long arg1f; /* flags, e.g. integer arg */ double arg2w; /* same info for args 2, 3, 4 */ double arg2l; long arg2f; /* double arg3w; double arg3l; long arg3f; double arg4w; double arg4l; long arg4f; */ }; /* fundef.ctrl bits: */ #define RELERR 1 /* fundef.tstyp test types: */ #define POWER 1 #define ELLIP 2 #define GAMMA 3 #define WRONK1 4 #define WRONK2 5 #define WRONK3 6 #define STDTR 7 /* fundef.argNf argument flag bits: */ #define INT 2 #define EXPSCAL 4 #if GLIBC2r1 #define NTESTS 12 #else #if GLIBC2 #define NTESTS 13 #else #define NTESTS 17 #endif #endif struct fundef defs[NTESTS] = { {" cube", cube, " cbrt", cbrt, 1, 0, 1, 2002.0, -1001.0, 0, 0.0, 0.0, 0}, {" tan", tan, " atan", atan, 1, 0, 1, 0.0, 0.0, 0, 0.0, 0.0, 0}, {" asin", asin, " sin", sin, 1, 0, 1, 2.0, -1.0, 0, 0.0, 0.0, 0}, {"square", square, " sqrt", sqrt, 1, 0, 1, 170.0, -85.0, EXPSCAL, 0.0, 0.0, 0}, {" exp", exp, " log", log, 1, 0, 0, 340.0, -170.0, 0, 0.0, 0.0, 0}, {" atanh", atanh, " tanh", tanh, 1, 0, 1, 2.0, -1.0, 0, 0.0, 0.0, 0}, {" sinh", sinh, " asinh", asinh, 1, 0, 1, 340.0, 0.0, 0, 0.0, 0.0, 0}, {" cosh", cosh, " acosh", acosh, 1, 0, 0, 340.0, 0.0, 0, 0.0, 0.0, 0}, #if !GLIBC2r1 {" exp10", exp10, " log10", log10, 1, 0, 0, 340.0, -170.0, 0, 0.0, 0.0, 0}, #endif {"pow", pow, "pow", pow, 2, POWER, 1, 21.0, 0.0, 0, 42.0, -21.0, 0}, {" acos", acos, " cos", cos, 1, 0, 0, 2.0, -1.0, 0, 0.0, 0.0, 0}, #if GLIBC2 #if !GLIBC2r1 { "tgamma", tgamma, "lgamma", lgamma, 1, GAMMA, 0, 34.0, 0.0, 0, 0.0, 0.0, 0}, #endif #else { "gamma", gamma, "lgam", lgam, 1, GAMMA, 0, 34.0, 0.0, 0, 0.0, 0.0, 0}, #endif { " Jn", jn, " Yn", yn, 2, WRONK1, 0, 30.0, 0.1, 0, 40.0, -20.0, INT}, #if !GLIBC2 { " ndtr", ndtr, " ndtri", ndtri, 1, 0, 1, 10.0L, -10.0L, 0, 0.0, 0.0, 0}, { " ndtri", ndtri, " ndtr", ndtr, 1, 0, 1, 1.0L, 0.0L, 0, 0.0, 0.0, 0}, {" ellpe", ellpe, " ellpk", ellpk, 1, ELLIP, 0, 1.0L, 0.0L, 0, 0.0, 0.0, 0}, { "stdtr", stdtr, "stdtri", stdtri, 2, STDTR, 1, 4.0L, -2.0L, 0, 30.0, 1.0, INT}, #endif }; static char *headrs[] = { "x = %s( %s(x) ): ", "x = %s( %s(x,a),1/a ): ", /* power */ "Legendre %s, %s: ", /* ellip */ "%s(x) = log(%s(x)): ", /* gamma */ "Wronksian of %s, %s: ", "Wronksian of %s, %s: ", "Wronksian of %s, %s: ", "x = %s(%s(k,x) ): ", /* stdtr */ }; const static double yy1 = 0.0; const static double y2 = 0.0; const static double y3 = 0.0; const static double y4 = 0.0; const static double a = 0.0; const static double x = 0.0; const static double y = 0.0; const static double z = 0.0; const static double e = 0.0; const static double max = 0.0; const static double rmsa = 0.0; const static double rms = 0.0; const static double ave = 0.0; int main() { double (*fun )(); double (*ifun )(); struct fundef *d; int i, k, itst; int m, ntr; #if SETPREC dprec(); /* set coprocessor precision */ #endif ntr = NTRIALS; printf( "Consistency test of math functions.\n" ); printf( "Max and rms relative errors for %d random arguments.\n", ntr ); /* Initialize machine dependent parameters: */ defs[1].arg1w = PI; defs[1].arg1l = -PI/2.0; /* Microsoft C has trouble with denormal numbers. */ #if 0 defs[3].arg1w = MAXLOG; defs[3].arg1l = -MAXLOG/2.0; defs[4].arg1w = 2*MAXLOG; defs[4].arg1l = -MAXLOG; #endif defs[6].arg1w = 2.0*MAXLOG; defs[6].arg1l = -MAXLOG; defs[7].arg1w = MAXLOG; defs[7].arg1l = 0.0; /* Outer loop, on the test number: */ for( itst=STRTST; itstname; ifun = d->inv; /* Absolute error criterion starts with gamma function * (put all such at end of table) */ #if 0 if( d->tstyp == GAMMA ) printf( "Absolute error criterion (but relative if >1):\n" ); #endif /* Smaller number of trials for Wronksians * (put them at end of list) */ #if 0 if( d->tstyp == WRONK1 ) { ntr = WTRIALS; printf( "Absolute error and only %d trials:\n", ntr ); } #endif if( d->tstyp == STDTR ) { ntr = NTRIALS/10; printf( "Relative error and only %d trials:\n", ntr ); } printf( headrs[d->tstyp], d->nam2, d->nam1 ); for( i=0; inargs ) { default: goto illegn; case 2: drand( &a ); a = d->arg2w * ( a - 1.0 ) + d->arg2l; if( d->arg2f & EXPSCAL ) { a = exp(a); drand( &y2 ); a -= 1.0e-13 * a * y2; } if( d->arg2f & INT ) { k = a + 0.25; a = k; } case 1: drand( &x ); x = d->arg1w * ( x - 1.0 ) + d->arg1l; if( d->arg1f & EXPSCAL ) { x = exp(x); drand( &a ); x += 1.0e-13 * x * a; } } /* compute function under test */ switch( d->nargs ) { case 1: switch( d->tstyp ) { case ELLIP: yy1 = ( *(fun) )(x); y2 = ( *(fun) )(1.0-x); y3 = ( *(ifun) )(x); y4 = ( *(ifun) )(1.0-x); break; case GAMMA: #if GLIBC2 y = lgamma(x); x = log( tgamma(x) ); #else y = lgam(x); x = log( gamma(x) ); #endif break; default: z = ( *(fun) )(x); y = ( *(ifun) )(z); } break; case 2: if( d->arg2f & INT ) { switch( d->tstyp ) { case WRONK1: yy1 = (*fun)( k, x ); /* jn */ y2 = (*fun)( k+1, x ); y3 = (*ifun)( k, x ); /* yn */ y4 = (*ifun)( k+1, x ); break; case WRONK2: yy1 = (*fun)( a, x ); /* iv */ y2 = (*fun)( a+1.0, x ); y3 = (*ifun)( k, x ); /* kn */ y4 = (*ifun)( k+1, x ); break; default: z = (*fun)( k, x ); y = (*ifun)( k, z ); } } else { if( d->tstyp == POWER ) { z = (*fun)( x, a ); y = (*ifun)( z, 1.0/a ); } else { z = (*fun)( a, x ); y = (*ifun)( a, z ); } } break; default: illegn: printf( "Illegal nargs= %d", d->nargs ); exit(1); } switch( d->tstyp ) { case WRONK1: e = (y2*y3 - yy1*y4) - 2.0/(PI*x); /* Jn, Yn */ break; case WRONK2: e = (y2*y3 + yy1*y4) - 1.0/x; /* In, Kn */ break; case ELLIP: e = (yy1-y3)*y4 + y3*y2 - PIO2; break; default: e = y - x; break; } if( d->ctrl & RELERR ) e /= x; else { if( fabs(x) > 1.0 ) e /= x; } ave += e; /* absolute value of error */ if( e < 0 ) e = -e; /* peak detect the error */ if( e > max ) { max = e; if( e > 1.0e-10 ) { printf("x %.6E z %.6E y %.6E max %.4E\n", x, z, y, max); if( d->tstyp == POWER ) { printf( "a %.6E\n", a ); } if( d->tstyp >= WRONK1 ) { printf( "yy1 %.4E y2 %.4E y3 %.4E y4 %.4E k %d x %.4E\n", yy1, y2, y3, y4, k, x ); } } /* printf("%.8E %.8E %.4E %6ld \n", x, y, max, n); printf("%d %.8E %.8E %.4E %6ld \n", k, x, y, max, n); printf("%.6E %.6E %.6E %.4E %6ld \n", a, x, y, max, n); printf("%.6E %.6E %.6E %.6E %.4E %6ld \n", a, b, x, y, max, n); printf("%.4E %.4E %.4E %.4E %.4E %.4E %6ld \n", a, b, c, x, y, max, n); */ } /* accumulate rms error */ e *= 1.0e16; /* adjust range */ rmsa += e * e; /* accumulate the square of the error */ } /* report after NTRIALS trials */ rms = 1.0e-16 * sqrt( rmsa/m ); if(d->ctrl & RELERR) printf(" max = %.2E rms = %.2E\n", max, rms ); else printf(" max = %.2E A rms = %.2E A\n", max, rms ); } /* loop on itst */ exit(0); }