/* clog.c * * Complex natural logarithm * * * * SYNOPSIS: * * void clog(); * cmplx z, w; * * clog( &z, &w ); * * * * DESCRIPTION: * * Returns complex logarithm to the base e (2.718...) of * the complex argument x. * * If z = x + iy, r = sqrt( x**2 + y**2 ), * then * w = log(r) + i arctan(y/x). * * The arctangent ranges from -PI to +PI. * * * ACCURACY: * * Relative error: * arithmetic domain # trials peak rms * DEC -10,+10 7000 8.5e-17 1.9e-17 * IEEE -10,+10 30000 5.0e-15 1.1e-16 * * Larger relative error can be observed for z near 1 +i0. * In IEEE arithmetic the peak absolute error is 5.2e-16, rms * absolute error 1.0e-16. */ /* Cephes Math Library Release 2.8: June, 2000 Copyright 1984, 1995, 2000 by Stephen L. Moshier */ #include "mconf.h" #ifdef ANSIPROT static void cchsh ( double x, double *c, double *s ); const static double redupi ( double x ); const static double ctans ( cmplx *z ); /* These are supposed to be in some standard place. */ double fabs (double); double sqrt (double); double pow (double, double); double log (double); double exp (double); double atan2 (double, double); double cosh (double); double sinh (double); double asin (double); double sin (double); double cos (double); double cabs (cmplx *); void cadd ( cmplx *, cmplx *, cmplx * ); void cmul ( cmplx *, cmplx *, cmplx * ); void csqrt ( cmplx *, cmplx * ); static void cchsh ( double, double *, double * ); const static double redupi ( double ); const static double ctans ( cmplx * ); void clog ( cmplx *, cmplx * ); void casin ( cmplx *, cmplx * ); void cacos ( cmplx *, cmplx * ); void catan ( cmplx *, cmplx * ); #else static void cchsh(); const static double redupi(); const static double ctans(); double cabs(), fabs(), sqrt(), pow(); double log(), exp(), atan2(), cosh(), sinh(); double asin(), sin(), cos(); void cadd(), cmul(), csqrt(); void clog(), casin(), cacos(), catan(); #endif extern double MAXNUM, MACHEP, PI, PIO2; void clog( z, w ) register cmplx *z, *w; { double p, rr; /*rr = sqrt( z->r * z->r + z->i * z->i );*/ rr = cabs(z); p = log(rr); #if ANSIC rr = atan2( z->i, z->r ); #else rr = atan2( z->r, z->i ); if( rr > PI ) rr -= PI + PI; #endif w->i = rr; w->r = p; } /* cexp() * * Complex exponential function * * * * SYNOPSIS: * * void cexp(); * cmplx z, w; * * cexp( &z, &w ); * * * * DESCRIPTION: * * Returns the exponential of the complex argument z * into the complex result w. * * If * z = x + iy, * r = exp(x), * * then * * w = r cos y + i r sin y. * * * ACCURACY: * * Relative error: * arithmetic domain # trials peak rms * DEC -10,+10 8700 3.7e-17 1.1e-17 * IEEE -10,+10 30000 3.0e-16 8.7e-17 * */ void cexp( z, w ) register cmplx *z, *w; { double r; r = exp( z->r ); w->r = r * cos( z->i ); w->i = r * sin( z->i ); } /* csin() * * Complex circular sine * * * * SYNOPSIS: * * void csin(); * cmplx z, w; * * csin( &z, &w ); * * * * DESCRIPTION: * * If * z = x + iy, * * then * * w = sin x cosh y + i cos x sinh y. * * * * ACCURACY: * * Relative error: * arithmetic domain # trials peak rms * DEC -10,+10 8400 5.3e-17 1.3e-17 * IEEE -10,+10 30000 3.8e-16 1.0e-16 * Also tested by csin(casin(z)) = z. * */ void csin( z, w ) register cmplx *z, *w; { double ch, sh; cchsh( z->i, &ch, &sh ); w->r = sin( z->r ) * ch; w->i = cos( z->r ) * sh; } /* calculate cosh and sinh */ static void cchsh( x, c, s ) double x, *c, *s; { double e, ei; if( fabs(x) <= 0.5 ) { *c = cosh(x); *s = sinh(x); } else { e = exp(x); ei = 0.5/e; e = 0.5 * e; *s = e - ei; *c = e + ei; } } /* ccos() * * Complex circular cosine * * * * SYNOPSIS: * * void ccos(); * cmplx z, w; * * ccos( &z, &w ); * * * * DESCRIPTION: * * If * z = x + iy, * * then * * w = cos x cosh y - i sin x sinh y. * * * * ACCURACY: * * Relative error: * arithmetic domain # trials peak rms * DEC -10,+10 8400 4.5e-17 1.3e-17 * IEEE -10,+10 30000 3.8e-16 1.0e-16 */ void ccos( z, w ) register cmplx *z, *w; { double ch, sh; cchsh( z->i, &ch, &sh ); w->r = cos( z->r ) * ch; w->i = -sin( z->r ) * sh; } /* ctan() * * Complex circular tangent * * * * SYNOPSIS: * * void ctan(); * cmplx z, w; * * ctan( &z, &w ); * * * * DESCRIPTION: * * If * z = x + iy, * * then * * sin 2x + i sinh 2y * w = --------------------. * cos 2x + cosh 2y * * On the real axis the denominator is zero at odd multiples * of PI/2. The denominator is evaluated by its Taylor * series near these points. * * * ACCURACY: * * Relative error: * arithmetic domain # trials peak rms * DEC -10,+10 5200 7.1e-17 1.6e-17 * IEEE -10,+10 30000 7.2e-16 1.2e-16 * Also tested by ctan * ccot = 1 and catan(ctan(z)) = z. */ void ctan( z, w ) register cmplx *z, *w; { double d; d = cos( 2.0 * z->r ) + cosh( 2.0 * z->i ); if( fabs(d) < 0.25 ) d = ctans(z); if( d == 0.0 ) { mtherr( "ctan", OVERFLOW ); w->r = MAXNUM; w->i = MAXNUM; return; } w->r = sin( 2.0 * z->r ) / d; w->i = sinh( 2.0 * z->i ) / d; } /* ccot() * * Complex circular cotangent * * * * SYNOPSIS: * * void ccot(); * cmplx z, w; * * ccot( &z, &w ); * * * * DESCRIPTION: * * If * z = x + iy, * * then * * sin 2x - i sinh 2y * w = --------------------. * cosh 2y - cos 2x * * On the real axis, the denominator has zeros at even * multiples of PI/2. Near these points it is evaluated * by a Taylor series. * * * ACCURACY: * * Relative error: * arithmetic domain # trials peak rms * DEC -10,+10 3000 6.5e-17 1.6e-17 * IEEE -10,+10 30000 9.2e-16 1.2e-16 * Also tested by ctan * ccot = 1 + i0. */ void ccot( z, w ) register cmplx *z, *w; { double d; d = cosh(2.0 * z->i) - cos(2.0 * z->r); if( fabs(d) < 0.25 ) d = ctans(z); if( d == 0.0 ) { mtherr( "ccot", OVERFLOW ); w->r = MAXNUM; w->i = MAXNUM; return; } w->r = sin( 2.0 * z->r ) / d; w->i = -sinh( 2.0 * z->i ) / d; } /* Program to subtract nearest integer multiple of PI */ /* extended precision value of PI: */ #ifdef UNK const static double DP1 = 3.14159265160560607910E0; const static double DP2 = 1.98418714791870343106E-9; const static double DP3 = 1.14423774522196636802E-17; #endif #ifdef DEC static unsigned short P1[] = {0040511,0007732,0120000,0000000,}; static unsigned short P2[] = {0031010,0055060,0100000,0000000,}; static unsigned short P3[] = {0022123,0011431,0105056,0001560,}; #define DP1 *(double *)P1 #define DP2 *(double *)P2 #define DP3 *(double *)P3 #endif #ifdef IBMPC static unsigned short P1[] = {0x0000,0x5400,0x21fb,0x4009}; static unsigned short P2[] = {0x0000,0x1000,0x0b46,0x3e21}; static unsigned short P3[] = {0xc06e,0x3145,0x6263,0x3c6a}; #define DP1 *(double *)P1 #define DP2 *(double *)P2 #define DP3 *(double *)P3 #endif #ifdef MIEEE static unsigned short P1[] = { 0x4009,0x21fb,0x5400,0x0000 }; static unsigned short P2[] = { 0x3e21,0x0b46,0x1000,0x0000 }; static unsigned short P3[] = { 0x3c6a,0x6263,0x3145,0xc06e }; #define DP1 *(double *)P1 #define DP2 *(double *)P2 #define DP3 *(double *)P3 #endif const static double redupi(x) double x; { double t; long i; t = x/PI; if( t >= 0.0 ) t += 0.5; else t -= 0.5; i = t; /* the multiple */ t = i; t = ((x - t * DP1) - t * DP2) - t * DP3; return(t); } /* Taylor series expansion for cosh(2y) - cos(2x) */ const static double ctans(z) cmplx *z; { double f, x, x2, y, y2, rn, t; double d; x = fabs( 2.0 * z->r ); y = fabs( 2.0 * z->i ); x = redupi(x); x = x * x; y = y * y; x2 = 1.0; y2 = 1.0; f = 1.0; rn = 0.0; d = 0.0; do { rn += 1.0; f *= rn; rn += 1.0; f *= rn; x2 *= x; y2 *= y; t = y2 + x2; t /= f; d += t; rn += 1.0; f *= rn; rn += 1.0; f *= rn; x2 *= x; y2 *= y; t = y2 - x2; t /= f; d += t; } while( fabs(t/d) > MACHEP ); return(d); } /* casin() * * Complex circular arc sine * * * * SYNOPSIS: * * void casin(); * cmplx z, w; * * casin( &z, &w ); * * * * DESCRIPTION: * * Inverse complex sine: * * 2 * w = -i clog( iz + csqrt( 1 - z ) ). * * * ACCURACY: * * Relative error: * arithmetic domain # trials peak rms * DEC -10,+10 10100 2.1e-15 3.4e-16 * IEEE -10,+10 30000 2.2e-14 2.7e-15 * Larger relative error can be observed for z near zero. * Also tested by csin(casin(z)) = z. */ void casin( z, w ) cmplx *z, *w; { static cmplx ca, ct, zz, z2; double x, y; x = z->r; y = z->i; if( y == 0.0 ) { if( fabs(x) > 1.0 ) { w->r = PIO2; w->i = 0.0; mtherr( "casin", DOMAIN ); } else { w->r = asin(x); w->i = 0.0; } return; } /* Power series expansion */ /* b = cabs(z); if( b < 0.125 ) { z2.r = (x - y) * (x + y); z2.i = 2.0 * x * y; cn = 1.0; n = 1.0; ca.r = x; ca.i = y; sum.r = x; sum.i = y; do { ct.r = z2.r * ca.r - z2.i * ca.i; ct.i = z2.r * ca.i + z2.i * ca.r; ca.r = ct.r; ca.i = ct.i; cn *= n; n += 1.0; cn /= n; n += 1.0; b = cn/n; ct.r *= b; ct.i *= b; sum.r += ct.r; sum.i += ct.i; b = fabs(ct.r) + fabs(ct.i); } while( b > MACHEP ); w->r = sum.r; w->i = sum.i; return; } */ ca.r = x; ca.i = y; ct.r = -ca.i; /* iz */ ct.i = ca.r; /* sqrt( 1 - z*z) */ /* cmul( &ca, &ca, &zz ) */ zz.r = (ca.r - ca.i) * (ca.r + ca.i); /*x * x - y * y */ zz.i = 2.0 * ca.r * ca.i; zz.r = 1.0 - zz.r; zz.i = -zz.i; csqrt( &zz, &z2 ); cadd( &z2, &ct, &zz ); clog( &zz, &zz ); w->r = zz.i; /* mult by 1/i = -i */ w->i = -zz.r; return; } /* cacos() * * Complex circular arc cosine * * * * SYNOPSIS: * * void cacos(); * cmplx z, w; * * cacos( &z, &w ); * * * * DESCRIPTION: * * * w = arccos z = PI/2 - arcsin z. * * * * * ACCURACY: * * Relative error: * arithmetic domain # trials peak rms * DEC -10,+10 5200 1.6e-15 2.8e-16 * IEEE -10,+10 30000 1.8e-14 2.2e-15 */ void cacos( z, w ) cmplx *z, *w; { casin( z, w ); w->r = PIO2 - w->r; w->i = -w->i; } /* catan() * * Complex circular arc tangent * * * * SYNOPSIS: * * void catan(); * cmplx z, w; * * catan( &z, &w ); * * * * DESCRIPTION: * * If * z = x + iy, * * then * 1 ( 2x ) * Re w = - arctan(-----------) + k PI * 2 ( 2 2) * (1 - x - y ) * * ( 2 2) * 1 (x + (y+1) ) * Im w = - log(------------) * 4 ( 2 2) * (x + (y-1) ) * * Where k is an arbitrary integer. * * * * ACCURACY: * * Relative error: * arithmetic domain # trials peak rms * DEC -10,+10 5900 1.3e-16 7.8e-18 * IEEE -10,+10 30000 2.3e-15 8.5e-17 * The check catan( ctan(z) ) = z, with |x| and |y| < PI/2, * had peak relative error 1.5e-16, rms relative error * 2.9e-17. See also clog(). */ void catan( z, w ) cmplx *z, *w; { double a, t, x, x2, y; x = z->r; y = z->i; if( (x == 0.0) && (y > 1.0) ) goto ovrf; x2 = x * x; a = 1.0 - x2 - (y * y); if( a == 0.0 ) goto ovrf; #if ANSIC t = atan2( 2.0 * x, a )/2.0; #else t = atan2( a, 2.0 * x )/2.0; #endif w->r = redupi( t ); t = y - 1.0; a = x2 + (t * t); if( a == 0.0 ) goto ovrf; t = y + 1.0; a = (x2 + (t * t))/a; w->i = log(a)/4.0; return; ovrf: mtherr( "catan", OVERFLOW ); w->r = MAXNUM; w->i = MAXNUM; } /* csinh * * Complex hyperbolic sine * * * * SYNOPSIS: * * void csinh(); * cmplx z, w; * * csinh( &z, &w ); * * * DESCRIPTION: * * csinh z = (cexp(z) - cexp(-z))/2 * = sinh x * cos y + i cosh x * sin y . * * ACCURACY: * * Relative error: * arithmetic domain # trials peak rms * IEEE -10,+10 30000 3.1e-16 8.2e-17 * */ void csinh (z, w) cmplx *z, *w; { double x, y; x = z->r; y = z->i; w->r = sinh (x) * cos (y); w->i = cosh (x) * sin (y); } /* casinh * * Complex inverse hyperbolic sine * * * * SYNOPSIS: * * void casinh(); * cmplx z, w; * * casinh (&z, &w); * * * * DESCRIPTION: * * casinh z = -i casin iz . * * ACCURACY: * * Relative error: * arithmetic domain # trials peak rms * IEEE -10,+10 30000 1.8e-14 2.6e-15 * */ void casinh (z, w) cmplx *z, *w; { cmplx u; u.r = 0.0; u.i = 1.0; cmul( z, &u, &u ); casin( &u, w ); u.r = 0.0; u.i = -1.0; cmul( &u, w, w ); } /* ccosh * * Complex hyperbolic cosine * * * * SYNOPSIS: * * void ccosh(); * cmplx z, w; * * ccosh (&z, &w); * * * * DESCRIPTION: * * ccosh(z) = cosh x cos y + i sinh x sin y . * * ACCURACY: * * Relative error: * arithmetic domain # trials peak rms * IEEE -10,+10 30000 2.9e-16 8.1e-17 * */ void ccosh (z, w) cmplx *z, *w; { double x, y; x = z->r; y = z->i; w->r = cosh (x) * cos (y); w->i = sinh (x) * sin (y); } /* cacosh * * Complex inverse hyperbolic cosine * * * * SYNOPSIS: * * void cacosh(); * cmplx z, w; * * cacosh (&z, &w); * * * * DESCRIPTION: * * acosh z = i acos z . * * ACCURACY: * * Relative error: * arithmetic domain # trials peak rms * IEEE -10,+10 30000 1.6e-14 2.1e-15 * */ void cacosh (z, w) cmplx *z, *w; { cmplx u; cacos( z, w ); u.r = 0.0; u.i = 1.0; cmul( &u, w, w ); } /* ctanh * * Complex hyperbolic tangent * * * * SYNOPSIS: * * void ctanh(); * cmplx z, w; * * ctanh (&z, &w); * * * * DESCRIPTION: * * tanh z = (sinh 2x + i sin 2y) / (cosh 2x + cos 2y) . * * ACCURACY: * * Relative error: * arithmetic domain # trials peak rms * IEEE -10,+10 30000 1.7e-14 2.4e-16 * */ /* 5.253E-02,1.550E+00 1.643E+01,6.553E+00 1.729E-14 21355 */ void ctanh (z, w) cmplx *z, *w; { double x, y, d; x = z->r; y = z->i; d = cosh (2.0 * x) + cos (2.0 * y); w->r = sinh (2.0 * x) / d; w->i = sin (2.0 * y) / d; return; } /* catanh * * Complex inverse hyperbolic tangent * * * * SYNOPSIS: * * void catanh(); * cmplx z, w; * * catanh (&z, &w); * * * * DESCRIPTION: * * Inverse tanh, equal to -i catan (iz); * * ACCURACY: * * Relative error: * arithmetic domain # trials peak rms * IEEE -10,+10 30000 2.3e-16 6.2e-17 * */ void catanh (z, w) cmplx *z, *w; { cmplx u; u.r = 0.0; u.i = 1.0; cmul (z, &u, &u); /* i z */ catan (&u, w); u.r = 0.0; u.i = -1.0; cmul (&u, w, w); /* -i catan iz */ return; } /* cpow * * Complex power function * * * * SYNOPSIS: * * void cpow(); * cmplx a, z, w; * * cpow (&a, &z, &w); * * * * DESCRIPTION: * * Raises complex A to the complex Zth power. * Definition is per AMS55 # 4.2.8, * analytically equivalent to cpow(a,z) = cexp(z clog(a)). * * ACCURACY: * * Relative error: * arithmetic domain # trials peak rms * IEEE -10,+10 30000 9.4e-15 1.5e-15 * */ void cpow (a, z, w) cmplx *a, *z, *w; { double x, y, r, theta, absa, arga; x = z->r; y = z->i; absa = cabs (a); if (absa == 0.0) { w->r = 0.0; w->i = 0.0; return; } arga = atan2 (a->i, a->r); r = pow (absa, x); theta = x * arga; if (y != 0.0) { r = r * exp (-y * arga); theta = theta + y * log (absa); } w->r = r * cos (theta); w->i = r * sin (theta); return; }