/* pow.c * * Power function * * * * SYNOPSIS: * * double x, y, z, pow(); * * z = pow( x, y ); * * * * DESCRIPTION: * * Computes x raised to the yth power. Analytically, * * x**y = exp( y log(x) ). * * Following Cody and Waite, this program uses a lookup table * of 2**-i/16 and pseudo extended precision arithmetic to * obtain an extra three bits of accuracy in both the logarithm * and the exponential. * * * * ACCURACY: * * Relative error: * arithmetic domain # trials peak rms * IEEE -26,26 30000 4.2e-16 7.7e-17 * DEC -26,26 60000 4.8e-17 9.1e-18 * 1/26 < x < 26, with log(x) uniformly distributed. * -26 < y < 26, y uniformly distributed. * IEEE 0,8700 30000 1.5e-14 2.1e-15 * 0.99 < x < 1.01, 0 < y < 8700, uniformly distributed. * * * ERROR MESSAGES: * * message condition value returned * pow overflow x**y > MAXNUM INFINITY * pow underflow x**y < 1/MAXNUM 0.0 * pow domain x<0 and y noninteger 0.0 * */ /* Cephes Math Library Release 2.8: June, 2000 Copyright 1984, 1995, 2000 by Stephen L. Moshier */ #include "mconf.h" static char fname[] = {"pow"}; #define SQRTH 0.70710678118654752440 #ifdef UNK const static double P[] = { 4.97778295871696322025E-1, 3.73336776063286838734E0, 7.69994162726912503298E0, 4.66651806774358464979E0 }; const static double Q[] = { /* 1.00000000000000000000E0, */ 9.33340916416696166113E0, 2.79999886606328401649E1, 3.35994905342304405431E1, 1.39995542032307539578E1 }; /* 2^(-i/16), IEEE precision */ const static double A[] = { 1.00000000000000000000E0, 9.57603280698573700036E-1, 9.17004043204671215328E-1, 8.78126080186649726755E-1, 8.40896415253714502036E-1, 8.05245165974627141736E-1, 7.71105412703970372057E-1, 7.38413072969749673113E-1, 7.07106781186547572737E-1, 6.77127773468446325644E-1, 6.48419777325504820276E-1, 6.20928906036742001007E-1, 5.94603557501360513449E-1, 5.69394317378345782288E-1, 5.45253866332628844837E-1, 5.22136891213706877402E-1, 5.00000000000000000000E-1 }; const static double B[] = { 0.00000000000000000000E0, 1.64155361212281360176E-17, 4.09950501029074826006E-17, 3.97491740484881042808E-17, -4.83364665672645672553E-17, 1.26912513974441574796E-17, 1.99100761573282305549E-17, -1.52339103990623557348E-17, 0.00000000000000000000E0 }; const static double R[] = { 1.49664108433729301083E-5, 1.54010762792771901396E-4, 1.33335476964097721140E-3, 9.61812908476554225149E-3, 5.55041086645832347466E-2, 2.40226506959099779976E-1, 6.93147180559945308821E-1 }; #define douba(k) A[k] #define doubb(k) B[k] #define MEXP 16383.0 #ifdef DENORMAL #define MNEXP -17183.0 #else #define MNEXP -16383.0 #endif #endif #ifdef DEC static unsigned short P[] = { 0037776,0156313,0175332,0163602, 0040556,0167577,0052366,0174245, 0040766,0062753,0175707,0055564, 0040625,0052035,0131344,0155636, }; static unsigned short Q[] = { /*0040200,0000000,0000000,0000000,*/ 0041025,0052644,0154404,0105155, 0041337,0177772,0007016,0047646, 0041406,0062740,0154273,0020020, 0041137,0177054,0106127,0044555, }; static unsigned short A[] = { 0040200,0000000,0000000,0000000, 0040165,0022575,0012444,0103314, 0040152,0140306,0163735,0022071, 0040140,0146336,0166052,0112341, 0040127,0042374,0145326,0116553, 0040116,0022214,0012437,0102201, 0040105,0063452,0010525,0003333, 0040075,0004243,0117530,0006067, 0040065,0002363,0031771,0157145, 0040055,0054076,0165102,0120513, 0040045,0177326,0124661,0050471, 0040036,0172462,0060221,0120422, 0040030,0033760,0050615,0134251, 0040021,0141723,0071653,0010703, 0040013,0112701,0161752,0105727, 0040005,0125303,0063714,0044173, 0040000,0000000,0000000,0000000 }; static unsigned short B[] = { 0000000,0000000,0000000,0000000, 0021473,0040265,0153315,0140671, 0121074,0062627,0042146,0176454, 0121413,0003524,0136332,0066212, 0121767,0046404,0166231,0012553, 0121257,0015024,0002357,0043574, 0021736,0106532,0043060,0056206, 0121310,0020334,0165705,0035326, 0000000,0000000,0000000,0000000 }; static unsigned short R[] = { 0034173,0014076,0137624,0115771, 0035041,0076763,0003744,0111311, 0035656,0141766,0041127,0074351, 0036435,0112533,0073611,0116664, 0037143,0054106,0134040,0152223, 0037565,0176757,0176026,0025551, 0040061,0071027,0173721,0147572 }; /* const static double R[] = { 0.14928852680595608186e-4, 0.15400290440989764601e-3, 0.13333541313585784703e-2, 0.96181290595172416964e-2, 0.55504108664085595326e-1, 0.24022650695909537056e0, 0.69314718055994529629e0 }; */ #define douba(k) (*(double *)&A[(k)<<2]) #define doubb(k) (*(double *)&B[(k)<<2]) #define MEXP 2031.0 #define MNEXP -2031.0 #endif #ifdef IBMPC static unsigned short P[] = { 0x5cf0,0x7f5b,0xdb99,0x3fdf, 0xdf15,0xea9e,0xddef,0x400d, 0xeb6f,0x7f78,0xccbd,0x401e, 0x9b74,0xb65c,0xaa83,0x4012, }; static unsigned short Q[] = { /*0x0000,0x0000,0x0000,0x3ff0,*/ 0x914e,0x9b20,0xaab4,0x4022, 0xc9f5,0x41c1,0xffff,0x403b, 0x6402,0x1b17,0xccbc,0x4040, 0xe92e,0x918a,0xffc5,0x402b, }; static unsigned short A[] = { 0x0000,0x0000,0x0000,0x3ff0, 0x90da,0xa2a4,0xa4af,0x3fee, 0xa487,0xdcfb,0x5818,0x3fed, 0x529c,0xdd85,0x199b,0x3fec, 0xd3ad,0x995a,0xe89f,0x3fea, 0xf090,0x82a3,0xc491,0x3fe9, 0xa0db,0x422a,0xace5,0x3fe8, 0x0187,0x73eb,0xa114,0x3fe7, 0x3bcd,0x667f,0xa09e,0x3fe6, 0x5429,0xdd48,0xab07,0x3fe5, 0x2a27,0xd536,0xbfda,0x3fe4, 0x3422,0x4c12,0xdea6,0x3fe3, 0xb715,0x0a31,0x06fe,0x3fe3, 0x6238,0x6e75,0x387a,0x3fe2, 0x517b,0x3c7d,0x72b8,0x3fe1, 0x890f,0x6cf9,0xb558,0x3fe0, 0x0000,0x0000,0x0000,0x3fe0 }; static unsigned short B[] = { 0x0000,0x0000,0x0000,0x0000, 0x3707,0xd75b,0xed02,0x3c72, 0xcc81,0x345d,0xa1cd,0x3c87, 0x4b27,0x5686,0xe9f1,0x3c86, 0x6456,0x13b2,0xdd34,0xbc8b, 0x42e2,0xafec,0x4397,0x3c6d, 0x82e4,0xd231,0xf46a,0x3c76, 0x8a76,0xb9d7,0x9041,0xbc71, 0x0000,0x0000,0x0000,0x0000 }; static unsigned short R[] = { 0x937f,0xd7f2,0x6307,0x3eef, 0x9259,0x60fc,0x2fbe,0x3f24, 0xef1d,0xc84a,0xd87e,0x3f55, 0x33b7,0x6ef1,0xb2ab,0x3f83, 0x1a92,0xd704,0x6b08,0x3fac, 0xc56d,0xff82,0xbfbd,0x3fce, 0x39ef,0xfefa,0x2e42,0x3fe6 }; #define douba(k) (*(double *)&A[(k)<<2]) #define doubb(k) (*(double *)&B[(k)<<2]) #define MEXP 16383.0 #ifdef DENORMAL #define MNEXP -17183.0 #else #define MNEXP -16383.0 #endif #endif #ifdef MIEEE static unsigned short P[] = { 0x3fdf,0xdb99,0x7f5b,0x5cf0, 0x400d,0xddef,0xea9e,0xdf15, 0x401e,0xccbd,0x7f78,0xeb6f, 0x4012,0xaa83,0xb65c,0x9b74 }; static unsigned short Q[] = { 0x4022,0xaab4,0x9b20,0x914e, 0x403b,0xffff,0x41c1,0xc9f5, 0x4040,0xccbc,0x1b17,0x6402, 0x402b,0xffc5,0x918a,0xe92e }; static unsigned short A[] = { 0x3ff0,0x0000,0x0000,0x0000, 0x3fee,0xa4af,0xa2a4,0x90da, 0x3fed,0x5818,0xdcfb,0xa487, 0x3fec,0x199b,0xdd85,0x529c, 0x3fea,0xe89f,0x995a,0xd3ad, 0x3fe9,0xc491,0x82a3,0xf090, 0x3fe8,0xace5,0x422a,0xa0db, 0x3fe7,0xa114,0x73eb,0x0187, 0x3fe6,0xa09e,0x667f,0x3bcd, 0x3fe5,0xab07,0xdd48,0x5429, 0x3fe4,0xbfda,0xd536,0x2a27, 0x3fe3,0xdea6,0x4c12,0x3422, 0x3fe3,0x06fe,0x0a31,0xb715, 0x3fe2,0x387a,0x6e75,0x6238, 0x3fe1,0x72b8,0x3c7d,0x517b, 0x3fe0,0xb558,0x6cf9,0x890f, 0x3fe0,0x0000,0x0000,0x0000 }; static unsigned short B[] = { 0x0000,0x0000,0x0000,0x0000, 0x3c72,0xed02,0xd75b,0x3707, 0x3c87,0xa1cd,0x345d,0xcc81, 0x3c86,0xe9f1,0x5686,0x4b27, 0xbc8b,0xdd34,0x13b2,0x6456, 0x3c6d,0x4397,0xafec,0x42e2, 0x3c76,0xf46a,0xd231,0x82e4, 0xbc71,0x9041,0xb9d7,0x8a76, 0x0000,0x0000,0x0000,0x0000 }; static unsigned short R[] = { 0x3eef,0x6307,0xd7f2,0x937f, 0x3f24,0x2fbe,0x60fc,0x9259, 0x3f55,0xd87e,0xc84a,0xef1d, 0x3f83,0xb2ab,0x6ef1,0x33b7, 0x3fac,0x6b08,0xd704,0x1a92, 0x3fce,0xbfbd,0xff82,0xc56d, 0x3fe6,0x2e42,0xfefa,0x39ef }; #define douba(k) (*(double *)&A[(k)<<2]) #define doubb(k) (*(double *)&B[(k)<<2]) #define MEXP 16383.0 #ifdef DENORMAL #define MNEXP -17183.0 #else #define MNEXP -16383.0 #endif #endif /* log2(e) - 1 */ #define LOG2EA 0.44269504088896340736 #define F W #define Fa Wa #define Fb Wb #define G W #define Ga Wa #define Gb u #define H W #define Ha Wb #define Hb Wb #ifdef ANSIPROT extern double floor ( double ); extern double fabs ( double ); extern double frexp ( double, int * ); extern double ldexp ( double, int ); extern double polevl ( double, void *, int ); extern double p1evl ( double, void *, int ); extern double powi ( double, int ); extern int signbit ( double ); extern int isnan ( double ); extern int isfinite ( double ); const static double reduc ( double ); #else double floor(), fabs(), frexp(), ldexp(); double polevl(), p1evl(), powi(); int signbit(), isnan(), isfinite(); const static double reduc(); #endif extern double MAXNUM; #ifdef INFINITIES extern double INFINITY; #endif #ifdef NANS extern double NAN; #endif #ifdef MINUSZERO extern double NEGZERO; #endif double pow( x, y ) double x, y; { double w, z, W, Wa, Wb, ya, yb, u; /* double F, Fa, Fb, G, Ga, Gb, H, Ha, Hb */ double aw, ay, wy; int e, i, nflg, iyflg, yoddint; if( y == 0.0 ) return( 1.0 ); #ifdef NANS if( isnan(x) ) return( x ); if( isnan(y) ) return( y ); #endif if( y == 1.0 ) return( x ); #ifdef INFINITIES if( !isfinite(y) && (x == 1.0 || x == -1.0) ) { mtherr( "pow", DOMAIN ); #ifdef NANS return( NAN ); #else return( INFINITY ); #endif } #endif if( x == 1.0 ) return( 1.0 ); if( y >= MAXNUM ) { #ifdef INFINITIES if( x > 1.0 ) return( INFINITY ); #else if( x > 1.0 ) return( MAXNUM ); #endif if( x > 0.0 && x < 1.0 ) return( 0.0); if( x < -1.0 ) { #ifdef INFINITIES return( INFINITY ); #else return( MAXNUM ); #endif } if( x > -1.0 && x < 0.0 ) return( 0.0 ); } if( y <= -MAXNUM ) { if( x > 1.0 ) return( 0.0 ); #ifdef INFINITIES if( x > 0.0 && x < 1.0 ) return( INFINITY ); #else if( x > 0.0 && x < 1.0 ) return( MAXNUM ); #endif if( x < -1.0 ) return( 0.0 ); #ifdef INFINITIES if( x > -1.0 && x < 0.0 ) return( INFINITY ); #else if( x > -1.0 && x < 0.0 ) return( MAXNUM ); #endif } if( x >= MAXNUM ) { #if INFINITIES if( y > 0.0 ) return( INFINITY ); #else if( y > 0.0 ) return( MAXNUM ); #endif return(0.0); } /* Set iyflg to 1 if y is an integer. */ iyflg = 0; w = floor(y); if( w == y ) iyflg = 1; /* Test for odd integer y. */ yoddint = 0; if( iyflg ) { ya = fabs(y); ya = floor(0.5 * ya); yb = 0.5 * fabs(w); if( ya != yb ) yoddint = 1; } if( x <= -MAXNUM ) { if( y > 0.0 ) { #ifdef INFINITIES if( yoddint ) return( -INFINITY ); return( INFINITY ); #else if( yoddint ) return( -MAXNUM ); return( MAXNUM ); #endif } if( y < 0.0 ) { #ifdef MINUSZERO if( yoddint ) return( NEGZERO ); #endif return( 0.0 ); } } nflg = 0; /* flag = 1 if x<0 raised to integer power */ if( x <= 0.0 ) { if( x == 0.0 ) { if( y < 0.0 ) { #ifdef MINUSZERO if( signbit(x) && yoddint ) return( -INFINITY ); #endif #ifdef INFINITIES return( INFINITY ); #else return( MAXNUM ); #endif } if( y > 0.0 ) { #ifdef MINUSZERO if( signbit(x) && yoddint ) return( NEGZERO ); #endif return( 0.0 ); } return( 1.0 ); } else { if( iyflg == 0 ) { /* noninteger power of negative number */ mtherr( fname, DOMAIN ); #ifdef NANS return(NAN); #else return(0.0L); #endif } nflg = 1; } } /* Integer power of an integer. */ if( iyflg ) { i = w; w = floor(x); if( (w == x) && (fabs(y) < 32768.0) ) { w = powi( x, (int) y ); return( w ); } } if( nflg ) x = fabs(x); /* For results close to 1, use a series expansion. */ w = x - 1.0; aw = fabs(w); ay = fabs(y); wy = w * y; ya = fabs(wy); if((aw <= 1.0e-3 && ay <= 1.0) || (ya <= 1.0e-3 && ay >= 1.0)) { z = (((((w*(y-5.)/720. + 1./120.)*w*(y-4.) + 1./24.)*w*(y-3.) + 1./6.)*w*(y-2.) + 0.5)*w*(y-1.) )*wy + wy + 1.; goto done; } /* These are probably too much trouble. */ #if 0 w = y * log(x); if (aw > 1.0e-3 && fabs(w) < 1.0e-3) { z = (((((( w/7. + 1.)*w/6. + 1.)*w/5. + 1.)*w/4. + 1.)*w/3. + 1.)*w/2. + 1.)*w + 1.; goto done; } if(ya <= 1.0e-3 && aw <= 1.0e-4) { z = ((((( wy*1./720. + (-w*1./48. + 1./120.) )*wy + ((w*17./144. - 1./12.)*w + 1./24.) )*wy + (((-w*5./16. + 7./24.)*w - 1./4.)*w + 1./6.) )*wy + ((((w*137./360. - 5./12.)*w + 11./24.)*w - 1./2.)*w + 1./2.) )*wy + (((((-w*1./6. + 1./5.)*w - 1./4)*w + 1./3.)*w -1./2.)*w ) )*wy + wy + 1.0; goto done; } #endif /* separate significand from exponent */ x = frexp( x, &e ); #if 0 /* For debugging, check for gross overflow. */ if( (e * y) > (MEXP + 1024) ) goto overflow; #endif /* Find significand of x in antilog table A[]. */ i = 1; if( x <= douba(9) ) i = 9; if( x <= douba(i+4) ) i += 4; if( x <= douba(i+2) ) i += 2; if( x >= douba(1) ) i = -1; i += 1; /* Find (x - A[i])/A[i] * in order to compute log(x/A[i]): * * log(x) = log( a x/a ) = log(a) + log(x/a) * * log(x/a) = log(1+v), v = x/a - 1 = (x-a)/a */ x -= douba(i); x -= doubb(i/2); x /= douba(i); /* rational approximation for log(1+v): * * log(1+v) = v - v**2/2 + v**3 P(v) / Q(v) */ z = x*x; w = x * ( z * polevl( x, P, 3 ) / p1evl( x, Q, 4 ) ); w = w - ldexp( z, -1 ); /* w - 0.5 * z */ /* Convert to base 2 logarithm: * multiply by log2(e) */ w = w + LOG2EA * w; /* Note x was not yet added in * to above rational approximation, * so do it now, while multiplying * by log2(e). */ z = w + LOG2EA * x; z = z + x; /* Compute exponent term of the base 2 logarithm. */ w = -i; w = ldexp( w, -4 ); /* divide by 16 */ w += e; /* Now base 2 log of x is w + z. */ /* Multiply base 2 log by y, in extended precision. */ /* separate y into large part ya * and small part yb less than 1/16 */ ya = reduc(y); yb = y - ya; F = z * y + w * yb; Fa = reduc(F); Fb = F - Fa; G = Fa + w * ya; Ga = reduc(G); Gb = G - Ga; H = Fb + Gb; Ha = reduc(H); w = ldexp( Ga+Ha, 4 ); /* Test the power of 2 for overflow */ if( w > MEXP ) { #ifndef INFINITIES mtherr( fname, OVERFLOW ); #endif #ifdef INFINITIES if( nflg && yoddint ) return( -INFINITY ); return( INFINITY ); #else if( nflg && yoddint ) return( -MAXNUM ); return( MAXNUM ); #endif } if( w < (MNEXP - 1) ) { #ifndef DENORMAL mtherr( fname, UNDERFLOW ); #endif #ifdef MINUSZERO if( nflg && yoddint ) return( NEGZERO ); #endif return( 0.0 ); } e = w; Hb = H - Ha; if( Hb > 0.0 ) { e += 1; Hb -= 0.0625; } /* Now the product y * log2(x) = Hb + e/16.0. * * Compute base 2 exponential of Hb, * where -0.0625 <= Hb <= 0. */ z = Hb * polevl( Hb, R, 6 ); /* z = 2**Hb - 1 */ /* Express e/16 as an integer plus a negative number of 16ths. * Find lookup table entry for the fractional power of 2. */ if( e < 0 ) i = 0; else i = 1; i = e/16 + i; e = 16*i - e; w = douba( e ); z = w + w * z; /* 2**-e * ( 1 + (2**Hb-1) ) */ z = ldexp( z, i ); /* multiply by integer power of 2 */ done: /* Negate if odd integer power of negative number */ if( nflg && yoddint ) { #ifdef MINUSZERO if( z == 0.0 ) z = NEGZERO; else #endif z = -z; } return( z ); } /* Find a multiple of 1/16 that is within 1/16 of x. */ const static double reduc(x) double x; { double t; t = ldexp( x, 4 ); t = floor( t ); t = ldexp( t, -4 ); return(t); }