/**************************************************************************//** * @file pwm.c * @version V3.00 * $Revision: 14 $ * $Date: 14/01/28 10:49a $ * @brief M051 series PWM driver source file * * @note * Copyright (C) 2014 Nuvoton Technology Corp. All rights reserved. *****************************************************************************/ #include "M051Series.h" /** @addtogroup M051_Device_Driver M051 Device Driver @{ */ /** @addtogroup M051_PWM_Driver PWM Driver @{ */ /** @addtogroup M051_PWM_EXPORTED_FUNCTIONS PWM Exported Functions @{ */ /** * @brief Config PWM capture and get the nearest unit time. * @param[in] pwm The base address of PWM module * @param[in] u32ChannelNum PWM channel number. Valid values are between 0~3 * @param[in] u32UnitTimeNsec The unit time of counter * @param[in] u32CaptureEdge The condition to latch the counter. This parameter is not used * @return The nearest unit time in nano second. * @details This function is used to config PWM capture and get the nearest unit time. */ uint32_t PWM_ConfigCaptureChannel(PWM_T *pwm, uint32_t u32ChannelNum, uint32_t u32UnitTimeNsec, uint32_t u32CaptureEdge) { uint32_t u32Src; uint32_t u32PWMClockSrc; uint32_t u32PWMClkTbl[4] = {__HXT, __LIRC, 0, __HIRC}; uint32_t u32NearestUnitTimeNsec; uint8_t u8Divider = 1; /* this table is mapping divider value to register configuration */ uint32_t u32PWMDividerToRegTbl[17] = {NULL, 4, 0, NULL, 1, NULL, NULL, NULL, 2, NULL, NULL, NULL, NULL, NULL, NULL, NULL, 3}; uint16_t u16Prescale = 2; uint16_t u16CNR = 0xFFFF; if(pwm == PWMA) u32Src = (CLK->CLKSEL1 & (CLK_CLKSEL1_PWM01_S_Msk << (u32ChannelNum >> 1))) >> (CLK_CLKSEL1_PWM01_S_Pos << (u32ChannelNum >> 1)); else /*pwm == PWMB*/ u32Src = (CLK->CLKSEL2 & (CLK_CLKSEL2_PWM45_S_Msk << (u32ChannelNum >> 1))) >> (CLK_CLKSEL2_PWM45_S_Pos << (u32ChannelNum >> 1)); if(u32Src == 2) { SystemCoreClockUpdate(); u32PWMClockSrc = SystemCoreClock; } else { u32PWMClockSrc = u32PWMClkTbl[u32Src]; } u32PWMClockSrc /= 1000; for(; u16Prescale <= 0x100; u16Prescale++) { u32NearestUnitTimeNsec = (1000000 * u16Prescale * u8Divider) / u32PWMClockSrc; if(u32NearestUnitTimeNsec < u32UnitTimeNsec) { if((u16Prescale == 0x100) && (u8Divider == 16)) //limit to the maximum unit time(nano second) break; if(u16Prescale == 0x100) { u16Prescale = 2; u8Divider <<= 1; // clk divider could only be 1, 2, 4, 8, 16 continue; } if(!((1000000 * ((u16Prescale * u8Divider) + 1)) > (u32NearestUnitTimeNsec * u32PWMClockSrc))) break; continue; } break; } // Store return value here 'cos we're gonna change u8Divider & u16Prescale & u16CNR to the real value to fill into register u16Prescale -= 1; // convert to real register value u8Divider = u32PWMDividerToRegTbl[u8Divider]; // every two channels share a prescaler (pwm)->PPR = ((pwm)->PPR & ~(PWM_PPR_CP01_Msk << ((u32ChannelNum >> 1) * 8))) | (u16Prescale << ((u32ChannelNum >> 1) * 8)); (pwm)->CSR = ((pwm)->CSR & ~(PWM_CSR_CSR0_Msk << (4 * u32ChannelNum))) | (u8Divider << (4 * u32ChannelNum)); // set PWM to edge aligned type (pwm)->PCR &= ~(PWM_PCR_PWM01TYPE_Msk << (u32ChannelNum >> 1)); (pwm)->PCR |= PWM_PCR_CH0MOD_Msk << (8 * u32ChannelNum); *((__IO uint32_t *)((((uint32_t) & ((pwm)->CNR0)) + (u32ChannelNum) * 12))) = u16CNR; return (u32NearestUnitTimeNsec); } /** * @brief This function config PWM generator and get the nearest frequency in edge aligned auto-reload mode * @param[in] pwm The base address of PWM module * @param[in] u32ChannelNum PWM channel number. Valid values are between 0~3 * @param[in] u32Frequency Target generator frequency * @param[in] u32DutyCycle Target generator duty cycle percentage. Valid range are between 0 ~ 100. 10 means 10%, 20 means 20%... * @return Nearest frequency clock in nano second * @note Since every two channels, (0 & 1), (2 & 3), shares a prescaler. Call this API to configure PWM frequency may affect * existing frequency of other channel. */ uint32_t PWM_ConfigOutputChannel(PWM_T *pwm, uint32_t u32ChannelNum, uint32_t u32Frequency, uint32_t u32DutyCycle) { uint32_t u32Src; uint32_t u32PWMClockSrc; uint32_t u32PWMClkTbl[4] = {__HXT, __LIRC, 0, __HIRC}; uint32_t i; uint8_t u8Divider = 1, u8Prescale = 0xFF; /* this table is mapping divider value to register configuration */ uint32_t u32PWMDividerToRegTbl[17] = {NULL, 4, 0, NULL, 1, NULL, NULL, NULL, 2, NULL, NULL, NULL, NULL, NULL, NULL, NULL, 3}; uint16_t u16CNR = 0xFFFF; if(pwm == PWMA) u32Src = (CLK->CLKSEL1 & (CLK_CLKSEL1_PWM01_S_Msk << (u32ChannelNum >> 1))) >> (CLK_CLKSEL1_PWM01_S_Pos << (u32ChannelNum >> 1)); else /*pwm == PWMB*/ u32Src = (CLK->CLKSEL2 & (CLK_CLKSEL2_PWM45_S_Msk << (u32ChannelNum >> 1))) >> (CLK_CLKSEL2_PWM45_S_Pos << (u32ChannelNum >> 1)); if(u32Src == 2) { SystemCoreClockUpdate(); u32PWMClockSrc = SystemCoreClock; } else { u32PWMClockSrc = u32PWMClkTbl[u32Src]; } for(; u8Divider < 17; u8Divider <<= 1) // clk divider could only be 1, 2, 4, 8, 16 { i = (u32PWMClockSrc / u32Frequency) / u8Divider; // If target value is larger than CNR * prescale, need to use a larger divider if(i > (0x10000 * 0x100)) continue; // CNR = 0xFFFF + 1, get a prescaler that CNR value is below 0xFFFF u8Prescale = (i + 0xFFFF) / 0x10000; // u8Prescale must at least be 2, otherwise the output stop if(u8Prescale < 3) u8Prescale = 2; i /= u8Prescale; if(i <= 0x10000) { if(i == 1) u16CNR = 1; // Too fast, and PWM cannot generate expected frequency... else u16CNR = i; break; } } // Store return value here 'cos we're gonna change u8Divider & u8Prescale & u16CNR to the real value to fill into register i = u32PWMClockSrc / (u8Prescale * u8Divider * u16CNR); u8Prescale -= 1; u16CNR -= 1; // convert to real register value u8Divider = u32PWMDividerToRegTbl[u8Divider]; // every two channels share a prescaler (pwm)->PPR = ((pwm)->PPR & ~(PWM_PPR_CP01_Msk << ((u32ChannelNum >> 1) * 8))) | (u8Prescale << ((u32ChannelNum >> 1) * 8)); (pwm)->CSR = ((pwm)->CSR & ~(PWM_CSR_CSR0_Msk << (4 * u32ChannelNum))) | (u8Divider << (4 * u32ChannelNum)); // set PWM to edge aligned type (pwm)->PCR &= ~(PWM_PCR_PWM01TYPE_Msk << (u32ChannelNum >> 1)); (pwm)->PCR |= PWM_PCR_CH0MOD_Msk << (8 * u32ChannelNum); *((__IO uint32_t *)((((uint32_t) & ((pwm)->CMR0)) + u32ChannelNum * 12))) = u32DutyCycle * (u16CNR + 1) / 100 - 1; *((__IO uint32_t *)((((uint32_t) & ((pwm)->CNR0)) + (u32ChannelNum) * 12))) = u16CNR; return(i); } /** * @brief Start PWM module * @param[in] pwm The base address of PWM module * - PWMA : PWM Group A * - PWMB : PWM Group B * @param[in] u32ChannelMask Combination of enabled channels. Each bit corresponds to a channel. * Bit 0 is channel 0, bit 1 is channel 1... * @return None * @details This function is used to start PWM module */ void PWM_Start(PWM_T *pwm, uint32_t u32ChannelMask) { uint32_t u32Mask = 0, i; for(i = 0; i < PWM_CHANNEL_NUM; i ++) { if(u32ChannelMask & (1 << i)) { u32Mask |= (PWM_PCR_CH0EN_Msk << (i * 8)); } } (pwm)->PCR |= u32Mask; } /** * @brief Stop PWM module * @param[in] pwm The base address of PWM module * - PWMA : PWM Group A * - PWMB : PWM Group B * @param[in] u32ChannelMask Combination of enabled channels. Each bit corresponds to a channel. * Bit 0 is channel 0, bit 1 is channel 1... * @return None * @details This function is used to stop PWM module */ void PWM_Stop(PWM_T *pwm, uint32_t u32ChannelMask) { uint32_t i; for(i = 0; i < PWM_CHANNEL_NUM; i ++) { if(u32ChannelMask & (1 << i)) { *((__IO uint32_t *)((((uint32_t) & ((pwm)->CNR0)) + i * 12))) = 0; } } } /** * @brief Stop PWM generation immediately by clear channel enable bit * @param[in] pwm The base address of PWM module * - PWMA : PWM Group A * - PWMB : PWM Group B * @param[in] u32ChannelMask Combination of enabled channels. Each bit corresponds to a channel. * Bit 0 is channel 0, bit 1 is channel 1... * @return None * @details This function is used to stop PWM generation immediately by clear channel enable bit */ void PWM_ForceStop(PWM_T *pwm, uint32_t u32ChannelMask) { uint32_t u32Mask = 0, i; for(i = 0; i < PWM_CHANNEL_NUM; i ++) { if(u32ChannelMask & (1 << i)) { u32Mask |= (PWM_PCR_CH0EN_Msk << (i * 8)); } } (pwm)->PCR &= ~u32Mask; } /** * @brief Enable selected channel to trigger ADC * @param[in] pwm The base address of PWM module * @param[in] u32ChannelNum PWM channel number. Valid values are between 0~3 * @param[in] u32Condition The condition to trigger ADC. Combination of following conditions: * - \ref PWM_DUTY_TRIGGER_ADC * - \ref PWM_PERIOD_TRIGGER_ADC * @return None * @details This function is used to enable selected channel to trigger ADC */ void PWM_EnableADCTrigger(PWM_T *pwm, uint32_t u32ChannelNum, uint32_t u32Condition) { (pwm)->TCON = ((pwm)->TCON & ~((PWM_DUTY_TRIGGER_ADC | PWM_PERIOD_TRIGGER_ADC) << u32ChannelNum)) | (u32Condition << u32ChannelNum); } /** * @brief Disable selected channel to trigger ADC * @param[in] pwm The base address of PWM module * @param[in] u32ChannelNum PWM channel number. Valid values are between 0~3 * @return None * @details This function is used to disable selected channel to trigger ADC */ void PWM_DisableADCTrigger(PWM_T *pwm, uint32_t u32ChannelNum) { (pwm)->TCON = ((pwm)->TCON & ~((PWM_DUTY_TRIGGER_ADC | PWM_PERIOD_TRIGGER_ADC) << u32ChannelNum)); } /** * @brief Clear selected channel trigger ADC flag * @param[in] pwm The base address of PWM module * @param[in] u32ChannelNum PWM channel number. Valid values are between 0~3 * @param[in] u32Condition This parameter is not used * @return None * @details This function is used to clear selected channel trigger ADC flag */ void PWM_ClearADCTriggerFlag(PWM_T *pwm, uint32_t u32ChannelNum, uint32_t u32Condition) { (pwm)->TSTATUS = (PWM_TSTATUS_PWM0TF_Msk << u32ChannelNum); } /** * @brief Get selected channel trigger ADC flag * @param[in] pwm The base address of PWM module * @param[in] u32ChannelNum PWM channel number. Valid values are between 0~3 * @retval 0 The specified channel trigger ADC to start of conversion flag is not set * @retval 1 The specified channel trigger ADC to start of conversion flag is set * @details This function is used to get PWM trigger ADC to start of conversion flag for specified channel */ uint32_t PWM_GetADCTriggerFlag(PWM_T *pwm, uint32_t u32ChannelNum) { return (((pwm)->TSTATUS & (PWM_TSTATUS_PWM0TF_Msk << (u32ChannelNum))) ? 1 : 0); } /** * @brief Enable capture of selected channel(s) * @param[in] pwm The base address of PWM module * - PWMA : PWM Group A * - PWMB : PWM Group B * @param[in] u32ChannelMask Combination of enabled channels. Each bit corresponds to a channel. * Bit 0 is channel 0, bit 1 is channel 1... * @return None * @details This function is used to enable capture of selected channel(s) */ void PWM_EnableCapture(PWM_T *pwm, uint32_t u32ChannelMask) { uint32_t i; for(i = 0; i < PWM_CHANNEL_NUM; i ++) { if(u32ChannelMask & (1 << i)) { if(i < 2) { (pwm)->CCR0 |= PWM_CCR0_CAPCH0EN_Msk << (i * 16); } else { (pwm)->CCR2 |= PWM_CCR2_CAPCH2EN_Msk << ((i - 2) * 16); } } } (pwm)->CAPENR |= u32ChannelMask; } /** * @brief Disable capture of selected channel(s) * @param[in] pwm The base address of PWM module * - PWMA : PWM Group A * - PWMB : PWM Group B * @param[in] u32ChannelMask Combination of enabled channels. Each bit corresponds to a channel. * Bit 0 is channel 0, bit 1 is channel 1... * @return None * @details This function is used to disable capture of selected channel(s) */ void PWM_DisableCapture(PWM_T *pwm, uint32_t u32ChannelMask) { uint32_t i; for(i = 0; i < PWM_CHANNEL_NUM; i ++) { if(u32ChannelMask & (1 << i)) { if(i < 2) { (pwm)->CCR0 &= ~(PWM_CCR0_CAPCH0EN_Msk << (i * 16)); } else { (pwm)->CCR2 &= ~(PWM_CCR2_CAPCH2EN_Msk << ((i - 2) * 16)); } } } (pwm)->CAPENR &= ~u32ChannelMask; } /** * @brief Enables PWM output generation of selected channel(s) * @param[in] pwm The base address of PWM module * - PWMA : PWM Group A * - PWMB : PWM Group B * @param[in] u32ChannelMask Combination of enabled channels. Each bit corresponds to a channel. * Set bit 0 to 1 enables channel 0 output, set bit 1 to 1 enables channel 1 output... * @return None * @details This function is used to enables PWM output generation of selected channel(s) */ void PWM_EnableOutput(PWM_T *pwm, uint32_t u32ChannelMask) { (pwm)->POE |= u32ChannelMask; } /** * @brief Disables PWM output generation of selected channel(s) * @param[in] pwm The base address of PWM module * - PWMA : PWM Group A * - PWMB : PWM Group B * @param[in] u32ChannelMask Combination of enabled channels. Each bit corresponds to a channel * Set bit 0 to 1 disables channel 0 output, set bit 1 to 1 disables channel 1 output... * @return None * @details This function is used to disables PWM output generation of selected channel(s) */ void PWM_DisableOutput(PWM_T *pwm, uint32_t u32ChannelMask) { (pwm)->POE &= ~u32ChannelMask; } /** * @brief Enable Dead zone of selected channel * @param[in] pwm The base address of PWM module * - PWMA : PWM Group A * - PWMB : PWM Group B * @param[in] u32ChannelNum PWM channel number. Valid values are between 0~3 * @param[in] u32Duration Dead Zone length in PWM clock count, valid values are between 0~0xFF, but 0 means there is no * dead zone. * @return None * @details This function is used to enable Dead zone of selected channel */ void PWM_EnableDeadZone(PWM_T *pwm, uint32_t u32ChannelNum, uint32_t u32Duration) { // every two channels shares the same setting u32ChannelNum >>= 1; // set duration (pwm)->PPR = ((pwm)->PPR & ~(PWM_PPR_DZI01_Msk << (8 * u32ChannelNum))) | (u32Duration << (PWM_PPR_DZI01_Pos + 8 * u32ChannelNum)); // enable dead zone (pwm)->PCR |= (PWM_PCR_DZEN01_Msk << u32ChannelNum); } /** * @brief Disable Dead zone of selected channel * @param[in] pwm The base address of PWM module * - PWMA : PWM Group A * - PWMB : PWM Group B * @param[in] u32ChannelNum PWM channel number. Valid values are between 0~3 * @return None * @details This function is used to disable Dead zone of selected channel */ void PWM_DisableDeadZone(PWM_T *pwm, uint32_t u32ChannelNum) { // every two channels shares the same setting u32ChannelNum >>= 1; // enable dead zone (pwm)->PCR &= ~(PWM_PCR_DZEN01_Msk << u32ChannelNum); } /** * @brief Enable capture interrupt of selected channel. * @param[in] pwm The base address of PWM module * - PWMA : PWM Group A * - PWMB : PWM Group B * @param[in] u32ChannelNum PWM channel number. Valid values are between 0~3 * @param[in] u32Edge Rising or falling edge to latch counter. * - \ref PWM_CAPTURE_INT_RISING_LATCH * - \ref PWM_CAPTURE_INT_FALLING_LATCH * @return None * @details This function is used to enable capture interrupt of selected channel. */ void PWM_EnableCaptureInt(PWM_T *pwm, uint32_t u32ChannelNum, uint32_t u32Edge) { if(u32ChannelNum < 2) (pwm)->CCR0 |= u32Edge << (u32ChannelNum * 16); else (pwm)->CCR2 |= u32Edge << ((u32ChannelNum - 2) * 16); } /** * @brief Disable capture interrupt of selected channel. * @param[in] pwm The base address of PWM module * - PWMA : PWM Group A * - PWMB : PWM Group B * @param[in] u32ChannelNum PWM channel number. Valid values are between 0~3 * @param[in] u32Edge Rising or falling edge to latch counter. * - \ref PWM_CAPTURE_INT_RISING_LATCH * - \ref PWM_CAPTURE_INT_FALLING_LATCH * @return None * @details This function is used to disable capture interrupt of selected channel. */ void PWM_DisableCaptureInt(PWM_T *pwm, uint32_t u32ChannelNum, uint32_t u32Edge) { if(u32ChannelNum < 2) (pwm)->CCR0 &= u32Edge << ~(u32ChannelNum * 16); else (pwm)->CCR2 &= u32Edge << ~((u32ChannelNum - 2) * 16); } /** * @brief Clear capture interrupt of selected channel. * @param[in] pwm The base address of PWM module * - PWMA : PWM Group A * - PWMB : PWM Group B * @param[in] u32ChannelNum PWM channel number. Valid values are between 0~3 * @param[in] u32Edge Rising or falling edge to latch counter. * - \ref PWM_CAPTURE_INT_RISING_LATCH * - \ref PWM_CAPTURE_INT_FALLING_LATCH * @return None * @details This function is used to clear capture interrupt of selected channel. */ void PWM_ClearCaptureIntFlag(PWM_T *pwm, uint32_t u32ChannelNum, uint32_t u32Edge) { //clear capture interrupt flag, and clear CRLR or CFLR latched indicator if(u32ChannelNum < 2) (pwm)->CCR0 = ((pwm)->CCR0 & PWM_CCR_MASK) | (PWM_CCR0_CAPIF0_Msk << (u32ChannelNum * 16)) | (u32Edge << (u32ChannelNum * 16 + 5)); else (pwm)->CCR2 = ((pwm)->CCR2 & PWM_CCR_MASK) | (PWM_CCR2_CAPIF2_Msk << ((u32ChannelNum - 2) * 16)) | (u32Edge << ((u32ChannelNum - 2) * 16 + 5)); } /** * @brief Get capture interrupt of selected channel. * @param[in] pwm The base address of PWM module * - PWMA : PWM Group A * - PWMB : PWM Group B * @param[in] u32ChannelNum PWM channel number. Valid values are between 0~3 * @retval 0 No capture interrupt * @retval 1 Rising edge latch interrupt * @retval 2 Falling edge latch interrupt * @retval 3 Rising and falling latch interrupt * @details This function is used to get capture interrupt of selected channel. */ uint32_t PWM_GetCaptureIntFlag(PWM_T *pwm, uint32_t u32ChannelNum) { if(u32ChannelNum < 2) { return (((pwm)->CCR0 & ((PWM_CCR0_CRLRI0_Msk | PWM_CCR0_CFLRI0_Msk) << (u32ChannelNum * 16))) >> (PWM_CCR0_CRLRI0_Pos + u32ChannelNum * 16)); } else { return (((pwm)->CCR2 & ((PWM_CCR2_CRLRI2_Msk | PWM_CCR2_CFLRI2_Msk) << ((u32ChannelNum - 2) * 16))) >> (PWM_CCR2_CRLRI2_Pos + (u32ChannelNum - 2) * 16)); } } /** * @brief Enable duty interrupt of selected channel * @param[in] pwm The base address of PWM module * - PWMA : PWM Group A * - PWMB : PWM Group B * @param[in] u32ChannelNum PWM channel number. Valid values are between 0~3 * @param[in] u32IntDutyType Duty interrupt type, could be either * - \ref PWM_DUTY_INT_DOWN_COUNT_MATCH_CMR * - \ref PWM_DUTY_INT_UP_COUNT_MATCH_CMR * @return None * @details This function is used to enable duty interrupt of selected channel. * Every two channels, (0 & 1), (2 & 3), shares the duty interrupt type setting. */ void PWM_EnableDutyInt(PWM_T *pwm, uint32_t u32ChannelNum, uint32_t u32IntDutyType) { (pwm)->PIER = ((pwm)->PIER & ~(PWM_PIER_INT01DTYPE_Msk << (u32ChannelNum >> 1))) | \ (PWM_PIER_PWMDIE0_Msk << u32ChannelNum) | (u32IntDutyType << (u32ChannelNum >> 1)); } /** * @brief Disable duty interrupt of selected channel * @param[in] pwm The base address of PWM module * - PWMA : PWM Group A * - PWMB : PWM Group B * @param[in] u32ChannelNum PWM channel number. Valid values are between 0~3 * @return None * @details This function is used to disable duty interrupt of selected channel */ void PWM_DisableDutyInt(PWM_T *pwm, uint32_t u32ChannelNum) { (pwm)->PIER &= ~(PWM_PIER_PWMDIE0_Msk << u32ChannelNum); } /** * @brief Clear duty interrupt flag of selected channel * @param[in] pwm The base address of PWM module * @param[in] u32ChannelNum PWM channel number. Valid values are between 0~3 * @return None * @details This function is used to clear duty interrupt flag of selected channel */ void PWM_ClearDutyIntFlag(PWM_T *pwm, uint32_t u32ChannelNum) { (pwm)->PIIR = PWM_PIIR_PWMDIF0_Msk << u32ChannelNum; } /** * @brief Get duty interrupt flag of selected channel * @param[in] pwm The base address of PWM module * @param[in] u32ChannelNum PWM channel number. Valid values are between 0~3 * @return Duty interrupt flag of specified channel * @retval 0 Duty interrupt did not occur * @retval 1 Duty interrupt occurred * @details This function is used to get duty interrupt flag of selected channel */ uint32_t PWM_GetDutyIntFlag(PWM_T *pwm, uint32_t u32ChannelNum) { return (((pwm)->PIIR & (PWM_PIIR_PWMDIF0_Msk << u32ChannelNum)) ? 1 : 0); } /** * @brief Enable period interrupt of selected channel * @param[in] pwm The base address of PWM module * @param[in] u32ChannelNum PWM channel number. Valid values are between 0~3 * @param[in] u32IntPeriodType Period interrupt type, could be either * - \ref PWM_PERIOD_INT_UNDERFLOW * - \ref PWM_PERIOD_INT_MATCH_CNR * @return None * @details This function is used to enable period interrupt of selected channel. * Every two channels, (0 & 1), (2 & 3), shares the period interrupt type setting. */ void PWM_EnablePeriodInt(PWM_T *pwm, uint32_t u32ChannelNum, uint32_t u32IntPeriodType) { (pwm)->PIER = ((pwm)->PIER & ~(PWM_PIER_INT01TYPE_Msk << (u32ChannelNum >> 1))) | \ (PWM_PIER_PWMIE0_Msk << u32ChannelNum) | (u32IntPeriodType << (u32ChannelNum >> 1)); } /** * @brief Disable period interrupt of selected channel * @param[in] pwm The base address of PWM module * @param[in] u32ChannelNum PWM channel number. Valid values are between 0~3 * @return None * @details This function is used to disable period interrupt of selected channel. */ void PWM_DisablePeriodInt(PWM_T *pwm, uint32_t u32ChannelNum) { (pwm)->PIER &= ~(PWM_PIER_PWMIE0_Msk << u32ChannelNum); } /** * @brief Clear period interrupt of selected channel * @param[in] pwm The base address of PWM module * @param[in] u32ChannelNum PWM channel number. Valid values are between 0~3 * @return None * @details This function is used to clear period interrupt of selected channel */ void PWM_ClearPeriodIntFlag(PWM_T *pwm, uint32_t u32ChannelNum) { (pwm)->PIIR = (PWM_PIIR_PWMIF0_Msk << u32ChannelNum); } /** * @brief Get period interrupt of selected channel * @param[in] pwm The base address of PWM module * @param[in] u32ChannelNum PWM channel number. Valid values are between 0~3 * @return Period interrupt flag of specified channel * @retval 0 Period interrupt did not occur * @retval 1 Period interrupt occurred * @details This function is used to get period interrupt of selected channel */ uint32_t PWM_GetPeriodIntFlag(PWM_T *pwm, uint32_t u32ChannelNum) { return (((pwm)->PIIR & (PWM_PIIR_PWMIF0_Msk << (u32ChannelNum))) ? 1 : 0); } /*@}*/ /* end of group M051_PWM_EXPORTED_FUNCTIONS */ /*@}*/ /* end of group M051_PWM_Driver */ /*@}*/ /* end of group M051_Device_Driver */ /*** (C) COPYRIGHT 2014 Nuvoton Technology Corp. ***/