/* * File : drv_spi_bus.c * This file is part of RT-Thread RTOS * COPYRIGHT (C) 2006-2013, RT-Thread Development Team * * The license and distribution terms for this file may be * found in the file LICENSE in this distribution or at * http://www.rt-thread.org/license/LICENSE * * Change Logs: * Date Author Notes * 2018-03-27 Liuguang the first version. */ #include "drv_spi_bus.h" #include "fsl_common.h" #include "fsl_iomuxc.h" #include "fsl_lpspi.h" #ifdef RT_USING_SPI #define LPSPI_CLK_SOURCE (1U) #define LPSPI_CLK_SOURCE_DIVIDER (7U) #if defined(FSL_SDK_DISABLE_DRIVER_CLOCK_CONTROL) && FSL_SDK_DISABLE_DRIVER_CLOCK_CONTROL #error "Please don't define 'FSL_SDK_DISABLE_DRIVER_CLOCK_CONTROL'!" #endif struct rt1050_spi { LPSPI_Type *base; struct rt_spi_configuration *cfg; }; struct rt1050_hw_spi_cs { rt_uint32_t pin; }; static uint32_t rt1050_get_lpspi_freq(void) { uint32_t freq = 0; /* CLOCK_GetMux(kCLOCK_LpspiMux): 00b: derive clock from PLL3 PFD1 720M 01b: derive clock from PLL3 PFD0 720M 10b: derive clock from PLL2 528M 11b: derive clock from PLL2 PFD2 396M */ switch(CLOCK_GetMux(kCLOCK_LpspiMux)) { case 0: freq = CLOCK_GetFreq(kCLOCK_Usb1PllPfd1Clk); break; case 1: freq = CLOCK_GetFreq(kCLOCK_Usb1PllPfd0Clk); break; case 2: freq = CLOCK_GetFreq(kCLOCK_SysPllClk); break; case 3: freq = CLOCK_GetFreq(kCLOCK_SysPllPfd2Clk); break; } freq /= (CLOCK_GetDiv(kCLOCK_LpspiDiv) + 1U); return freq; } static rt_err_t rt1050_spi_init(LPSPI_Type *base, struct rt_spi_configuration *cfg) { lpspi_master_config_t masterConfig; if(cfg->data_width != 8 && cfg->data_width != 16 && cfg->data_width != 32) { return RT_EINVAL; } #if defined(RT_USING_SPIBUS1) if(base == LPSPI1) { IOMUXC_SetPinMux (IOMUXC_GPIO_EMC_27_LPSPI1_SCK, 0U); IOMUXC_SetPinConfig(IOMUXC_GPIO_EMC_27_LPSPI1_SCK, 0x10B0u); IOMUXC_SetPinMux (IOMUXC_GPIO_EMC_28_LPSPI1_SDO, 0U); IOMUXC_SetPinConfig(IOMUXC_GPIO_EMC_28_LPSPI1_SDO, 0x10B0u); IOMUXC_SetPinMux (IOMUXC_GPIO_EMC_29_LPSPI1_SDI, 0U); IOMUXC_SetPinConfig(IOMUXC_GPIO_EMC_29_LPSPI1_SDI, 0x10B0u); } #endif #if defined(RT_USING_SPIBUS2) if(base == LPSPI2) { IOMUXC_SetPinMux (IOMUXC_GPIO_SD_B1_07_LPSPI2_SCK, 0U); IOMUXC_SetPinConfig(IOMUXC_GPIO_SD_B1_07_LPSPI2_SCK, 0x10B0u); IOMUXC_SetPinMux (IOMUXC_GPIO_SD_B1_08_LPSPI2_SD0, 0U); IOMUXC_SetPinConfig(IOMUXC_GPIO_SD_B1_08_LPSPI2_SD0, 0x10B0u); IOMUXC_SetPinMux (IOMUXC_GPIO_SD_B1_09_LPSPI2_SDI, 0U); IOMUXC_SetPinConfig(IOMUXC_GPIO_SD_B1_09_LPSPI2_SDI, 0x10B0u); /* Optional IO config */ //IOMUXC_SetPinMux (IOMUXC_GPIO_EMC_00_LPSPI2_SCK, 0U); //IOMUXC_SetPinConfig(IOMUXC_GPIO_EMC_00_LPSPI2_SCK, 0x10B0u); //IOMUXC_SetPinMux (IOMUXC_GPIO_EMC_02_LPSPI2_SDO, 0U); //IOMUXC_SetPinConfig(IOMUXC_GPIO_EMC_02_LPSPI2_SDO, 0x10B0u); //IOMUXC_SetPinMux (IOMUXC_GPIO_EMC_03_LPSPI2_SDI, 0U); //IOMUXC_SetPinConfig(IOMUXC_GPIO_EMC_03_LPSPI2_SDI, 0x10B0u); } #endif #if defined(RT_USING_SPIBUS3) if(base == LPSPI3) { IOMUXC_SetPinMux (IOMUXC_GPIO_AD_B1_13_LPSPI3_SDI, 0U); IOMUXC_SetPinConfig(IOMUXC_GPIO_AD_B1_13_LPSPI3_SDI, 0x10B0u); IOMUXC_SetPinMux (IOMUXC_GPIO_AD_B1_14_LPSPI3_SDO, 0U); IOMUXC_SetPinConfig(IOMUXC_GPIO_AD_B1_14_LPSPI3_SDO, 0x10B0u); IOMUXC_SetPinMux (IOMUXC_GPIO_AD_B1_15_LPSPI3_SCK, 0U); IOMUXC_SetPinConfig(IOMUXC_GPIO_AD_B1_15_LPSPI3_SCK, 0x10B0u); } #endif #if defined(RT_USING_SPIBUS4) if(base == LPSPI4) { IOMUXC_SetPinMux (IOMUXC_GPIO_B0_01_LPSPI4_SDI, 0U); IOMUXC_SetPinConfig(IOMUXC_GPIO_B0_01_LPSPI4_SDI, 0x10B0u); IOMUXC_SetPinMux (IOMUXC_GPIO_B0_02_LPSPI4_SDO, 0U); IOMUXC_SetPinConfig(IOMUXC_GPIO_B0_02_LPSPI4_SDO, 0x10B0u); IOMUXC_SetPinMux (IOMUXC_GPIO_B0_03_LPSPI4_SCK, 0U); IOMUXC_SetPinConfig(IOMUXC_GPIO_B0_03_LPSPI4_SCK, 0x10B0u); /* Optional IO config */ //IOMUXC_SetPinMux (IOMUXC_GPIO_B1_07_LPSPI4_SCK, 0U); //IOMUXC_SetPinConfig(IOMUXC_GPIO_B1_07_LPSPI4_SCK, 0x10B0u); //IOMUXC_SetPinMux (IOMUXC_GPIO_B1_06_LPSPI4_SDO, 0U); //IOMUXC_SetPinConfig(IOMUXC_GPIO_B1_06_LPSPI4_SDO, 0x10B0u); //IOMUXC_SetPinMux (IOMUXC_GPIO_B1_05_LPSPI4_SDI, 0U); //IOMUXC_SetPinConfig(IOMUXC_GPIO_B1_05_LPSPI4_SDI, 0x10B0u); } #endif LPSPI_MasterGetDefaultConfig(&masterConfig); masterConfig.baudRate = cfg->max_hz; masterConfig.bitsPerFrame = cfg->data_width; if(cfg->mode & RT_SPI_MSB) { masterConfig.direction = kLPSPI_MsbFirst; } else { masterConfig.direction = kLPSPI_LsbFirst; } if(cfg->mode & RT_SPI_CPHA) { masterConfig.cpha = kLPSPI_ClockPhaseSecondEdge; } else { masterConfig.cpha = kLPSPI_ClockPhaseFirstEdge; } if(cfg->mode & RT_SPI_CPOL) { masterConfig.cpol = kLPSPI_ClockPolarityActiveLow; } else { masterConfig.cpol = kLPSPI_ClockPolarityActiveHigh; } masterConfig.pinCfg = kLPSPI_SdiInSdoOut; masterConfig.dataOutConfig = kLpspiDataOutTristate; masterConfig.pcsToSckDelayInNanoSec = 1000000000 / masterConfig.baudRate; masterConfig.lastSckToPcsDelayInNanoSec = 1000000000 / masterConfig.baudRate; masterConfig.betweenTransferDelayInNanoSec = 1000000000 / masterConfig.baudRate; LPSPI_MasterInit(base, &masterConfig, rt1050_get_lpspi_freq()); base->CFGR1 |= LPSPI_CFGR1_PCSCFG_MASK; return RT_EOK; } rt_err_t rt1050_spi_bus_attach_device(const char *bus_name, const char *device_name, rt_uint32_t pin) { rt_err_t ret; struct rt_spi_device *spi_device = (struct rt_spi_device *)rt_malloc(sizeof(struct rt_spi_device)); RT_ASSERT(spi_device != RT_NULL); struct rt1050_hw_spi_cs *cs_pin = (struct rt1050_hw_spi_cs *)rt_malloc(sizeof(struct rt1050_hw_spi_cs)); RT_ASSERT(cs_pin != RT_NULL); cs_pin->pin = pin; rt_pin_mode(pin, PIN_MODE_OUTPUT); rt_pin_write(pin, PIN_HIGH); ret = rt_spi_bus_attach_device(spi_device, device_name, bus_name, (void *)cs_pin); return ret; } static rt_err_t spi_configure(struct rt_spi_device *device, struct rt_spi_configuration *cfg) { rt_err_t ret; struct rt1050_spi *spi = RT_NULL; RT_ASSERT(cfg != RT_NULL); RT_ASSERT(device != RT_NULL); spi = (struct rt1050_spi *)(device->bus->parent.user_data); spi->cfg = cfg; ret = rt1050_spi_init(spi->base, cfg); return ret; } static rt_uint32_t spixfer(struct rt_spi_device *device, struct rt_spi_message *message) { lpspi_transfer_t transfer; RT_ASSERT(device != RT_NULL); RT_ASSERT(device->bus != RT_NULL); RT_ASSERT(device->bus->parent.user_data != RT_NULL); struct rt1050_spi *spi = (struct rt1050_spi *)(device->bus->parent.user_data); struct rt1050_hw_spi_cs *cs = device->parent.user_data; if(message->cs_take) { rt_pin_write(cs->pin, PIN_LOW); } transfer.rxData = (uint8_t *)(message->recv_buf); transfer.txData = (uint8_t *)(message->send_buf); transfer.dataSize = message->length; status_t stat = LPSPI_MasterTransferBlocking(spi->base, &transfer); if(message->cs_release) { rt_pin_write(cs->pin, PIN_HIGH); } return message->length; } #if defined(RT_USING_SPIBUS1) static struct rt1050_spi spi1 = { .base = LPSPI1 }; static struct rt_spi_bus spi1_bus = { .parent.user_data = &spi1 }; #endif #if defined(RT_USING_SPIBUS2) static struct rt1050_spi spi2 = { .base = LPSPI2 }; static struct rt_spi_bus spi2_bus = { .parent.user_data = &spi2 }; #endif #if defined(RT_USING_SPIBUS3) static struct rt1050_spi spi3 = { .base = LPSPI3 }; static struct rt_spi_bus spi3_bus = { .parent.user_data = &spi3 }; #endif #if defined(RT_USING_SPIBUS4) static struct rt1050_spi spi4 = { .base = LPSPI4 }; static struct rt_spi_bus spi4_bus = { .parent.user_data = &spi4 }; #endif static struct rt_spi_ops rt1050_spi_ops = { .configure = spi_configure, .xfer = spixfer }; int rt_hw_spi_bus_init(void) { #if defined(RT_USING_SPIBUS1) || defined(RT_USING_SPIBUS2) || \ defined(RT_USING_SPIBUS3) || defined(RT_USING_SPIBUS4) CLOCK_SetMux(kCLOCK_LpspiMux, LPSPI_CLK_SOURCE); CLOCK_SetDiv(kCLOCK_LpspiDiv, LPSPI_CLK_SOURCE_DIVIDER); CLOCK_EnableClock(kCLOCK_Iomuxc); #endif #if defined(RT_USING_SPIBUS1) rt_spi_bus_register(&spi1_bus, "spibus1", &rt1050_spi_ops); #endif #if defined(RT_USING_SPIBUS2) rt_spi_bus_register(&spi2_bus, "spibus2", &rt1050_spi_ops); #endif #if defined(RT_USING_SPIBUS3) rt_spi_bus_register(&spi3_bus, "spibus3", &rt1050_spi_ops); #endif #if defined(RT_USING_SPIBUS4) rt_spi_bus_register(&spi4_bus, "spibus4", &rt1050_spi_ops); #endif return RT_EOK; } INIT_BOARD_EXPORT(rt_hw_spi_bus_init); #endif