/* * File : module.c * This file is part of RT-Thread RTOS * COPYRIGHT (C) 2006 - 2010, RT-Thread Development Team * * The license and distribution terms for this file may be * found in the file LICENSE in this distribution or at * http://www.rt-thread.org/license/LICENSE * * Change Logs: * Date Author Notes * 2010-01-09 Bernard first version * 2010-04-09 yi.qiu implement based on first version */ #include #include #include "string.h" #include "kservice.h" /* #define RT_MODULE_DEBUG */ #ifdef RT_USING_MODULE #include "module.h" #define elf_module ((Elf32_Ehdr *)module_ptr) #define shdr ((Elf32_Shdr *)((rt_uint8_t *)module_ptr + elf_module->e_shoff)) #define phdr ((Elf32_Phdr *)((rt_uint8_t *)module_ptr + elf_module->e_phoff)) #define IS_PROG(s) (s.sh_type == SHT_PROGBITS) #define IS_NOPROG(s) (s.sh_type == SHT_NOBITS) #define IS_REL(s) (s.sh_type == SHT_REL) #define IS_RELA(s) (s.sh_type == SHT_RELA) #define IS_ALLOC(s) (s.sh_flags == SHF_ALLOC) #define IS_AX(s) ((s.sh_flags & SHF_ALLOC) && (s.sh_flags & SHF_EXECINSTR)) #define IS_AW(s) ((s.sh_flags & SHF_ALLOC) && (s.sh_flags & SHF_WRITE)) static struct rt_module* rt_current_module = RT_NULL; /** * This function will return self module object * * @return the self module object * */ rt_module_t rt_module_self (void) { /* return current module */ return rt_current_module; } /** * This function will set current module object * * @return RT_EOK */ rt_err_t rt_module_set (rt_module_t module) { /* set current module */ rt_current_module = module; return RT_EOK; } static int rt_module_arm_relocate(struct rt_module* module, Elf32_Rel *rel, Elf32_Addr sym_val) { Elf32_Addr *where, tmp; Elf32_Sword addend; where = (Elf32_Addr *)((rt_uint8_t*)module->module_space + rel->r_offset); switch (ELF32_R_TYPE(rel->r_info)) { case R_ARM_NONE: break; case R_ARM_ABS32: *where += (Elf32_Addr)sym_val; #ifdef RT_MODULE_DEBUG rt_kprintf("R_ARM_ABS32: %x -> %x\n", where, *where); #endif break; case R_ARM_PC24: case R_ARM_PLT32: case R_ARM_CALL: case R_ARM_JUMP24: addend = *where & 0x00ffffff; if (addend & 0x00800000) addend |= 0xff000000; tmp = sym_val - (Elf32_Addr)where + (addend << 2); tmp >>= 2; *where = (*where & 0xff000000) | (tmp & 0x00ffffff); #ifdef RT_MODULE_DEBUG rt_kprintf("R_ARM_PC24: %x -> %x\n", where, *where); #endif break; case R_ARM_V4BX: *where &= 0xf000000f; *where |= 0x01a0f000; break; case R_ARM_GLOB_DAT: case R_ARM_JUMP_SLOT: *where = (Elf32_Addr)sym_val; #ifdef RT_MODULE_DEBUG rt_kprintf("R_ARM_JUMP_SLOT: 0x%x -> 0x%x 0x%x\n", where, *where, sym_val); #endif break; default: return -1; } return 0; } static void rt_module_init_object_container(struct rt_module* module) { RT_ASSERT(module != RT_NULL); /* init object container - thread */ rt_list_init(&(module->module_object[RT_Object_Class_Thread].object_list)); module->module_object[RT_Object_Class_Thread].object_size = sizeof(struct rt_thread); module->module_object[RT_Object_Class_Thread].type = RT_Object_Class_Thread; #ifdef RT_USING_SEMAPHORE /* init object container - semaphore */ rt_list_init(&(module->module_object[RT_Object_Class_Semaphore].object_list)); module->module_object[RT_Object_Class_Semaphore].object_size = sizeof(struct rt_semaphore); module->module_object[RT_Object_Class_Semaphore].type = RT_Object_Class_Semaphore; #endif #ifdef RT_USING_MUTEX /* init object container - mutex */ rt_list_init(&(module->module_object[RT_Object_Class_Mutex].object_list)); module->module_object[RT_Object_Class_Mutex].object_size = sizeof(struct rt_mutex); module->module_object[RT_Object_Class_Mutex].type = RT_Object_Class_Mutex; #endif #ifdef RT_USING_EVENT /* init object container - event */ rt_list_init(&(module->module_object[RT_Object_Class_Event].object_list)); module->module_object[RT_Object_Class_Event].object_size = sizeof(struct rt_event); module->module_object[RT_Object_Class_Event].type = RT_Object_Class_Event; #endif #ifdef RT_USING_MAILBOX /* init object container - mailbox */ rt_list_init(&(module->module_object[RT_Object_Class_MailBox].object_list)); module->module_object[RT_Object_Class_MailBox].object_size = sizeof(struct rt_mailbox); module->module_object[RT_Object_Class_MailBox].type = RT_Object_Class_MailBox; #endif #ifdef RT_USING_MESSAGEQUEUE /* init object container - message queue */ rt_list_init(&(module->module_object[RT_Object_Class_MessageQueue].object_list)); module->module_object[RT_Object_Class_MessageQueue].object_size = sizeof(struct rt_messagequeue); module->module_object[RT_Object_Class_MessageQueue].type = RT_Object_Class_MessageQueue; #endif #ifdef RT_USING_MEMPOOL /* init object container - memory pool */ rt_list_init(&(module->module_object[RT_Object_Class_MemPool].object_list)); module->module_object[RT_Object_Class_MemPool].object_size = sizeof(struct rt_mempool); module->module_object[RT_Object_Class_MemPool].type = RT_Object_Class_MemPool; #endif #ifdef RT_USING_DEVICE /* init object container - device */ rt_list_init(&(module->module_object[RT_Object_Class_Device].object_list)); module->module_object[RT_Object_Class_Device].object_size = sizeof(struct rt_device); module->module_object[RT_Object_Class_Device].type = RT_Object_Class_Device; #endif /* init object container - timer */ rt_list_init(&(module->module_object[RT_Object_Class_Timer].object_list)); module->module_object[RT_Object_Class_Timer].object_size = sizeof(struct rt_timer); module->module_object[RT_Object_Class_Timer].type = RT_Object_Class_Timer; } /** * This function will load a module from memory and create a thread for it * * @param name the name of module, which shall be unique * @param module_ptr the memory address of module image * * @return the module object * */ rt_module_t rt_module_load(const rt_uint8_t* name, void* module_ptr) { rt_uint32_t index; rt_uint32_t module_size = 0; struct rt_module* module = RT_NULL; rt_uint8_t *ptr, *strtab; #ifdef RT_MODULE_DEBUG rt_kprintf("rt_module_load: %s\n", name); #endif /* check ELF header */ if (rt_memcmp(elf_module->e_ident, RTMMAG, SELFMAG) != 0 || elf_module->e_ident[EI_CLASS] != ELFCLASS32) { rt_kprintf(" module magic error\n"); return RT_NULL; } /* get the ELF image size */ for (index = 0; index < elf_module->e_phnum; index++) { if(phdr[index].p_type == PT_LOAD) module_size += phdr[index].p_memsz; } if (module_size == 0) { rt_kprintf(" module size error\n"); return module; } /* allocate module */ module = (struct rt_module *)rt_object_allocate(RT_Object_Class_Module, (const char*)name); if (module == RT_NULL) return RT_NULL; /* allocate module space */ module->module_space = rt_malloc(module_size); if (module->module_space == RT_NULL) { rt_object_delete(&(module->parent)); return RT_NULL; } /* zero all space */ ptr = module->module_space; rt_memset(ptr, 0, module_size); for (index = 0; index < elf_module->e_phnum; index++) { if(phdr[index].p_type == PT_LOAD) { rt_memcpy(ptr, (rt_uint8_t*)elf_module + phdr[index].p_offset, phdr[index].p_filesz); ptr += phdr[index].p_memsz; } } /* set module entry */ module->module_entry = module->module_space + elf_module->e_entry; /* handle relocation section */ for (index = 0; index < elf_module->e_shnum; index ++) { if (IS_REL(shdr[index])) { rt_uint32_t i, nr_reloc; Elf32_Sym *symtab; Elf32_Rel *rel; /* get relocate item */ rel = (Elf32_Rel *) ((rt_uint8_t*)module_ptr + shdr[index].sh_offset); /* locate .rel.plt and .rel.dyn */ symtab =(Elf32_Sym *) ((rt_uint8_t*)module_ptr + shdr[shdr[index].sh_link].sh_offset); strtab = (rt_uint8_t*) module_ptr + shdr[shdr[shdr[index].sh_link].sh_link].sh_offset; nr_reloc = (rt_uint32_t) (shdr[index].sh_size / sizeof(Elf32_Rel)); /* relocate every items */ for (i = 0; i < nr_reloc; i ++) { Elf32_Sym *sym = &symtab[ELF32_R_SYM(rel->r_info)]; #ifdef RT_MODULE_DEBUG rt_kprintf("relocate symbol %s shndx %d\n", strtab + sym->st_name, sym->st_shndx); #endif if(sym->st_shndx != 0) { rt_module_arm_relocate(module, rel, (Elf32_Addr)((rt_uint8_t*)module->module_space + sym->st_value)); } rel ++; } } } /* init module object container */ rt_module_init_object_container(module); module->stack_size = 512; module->thread_priority = 90; module->module_thread = rt_thread_create(name, module->module_entry, RT_NULL, module->stack_size, module->thread_priority, 10); module->module_thread->module_parent = module; rt_thread_startup(module->module_thread); return module; } #ifdef RT_USING_DFS #include /** * This function will load a module from file * * @param name the name of module, which shall be unique * @param filename the file name of application module image * * @return the module object * */ rt_module_t rt_module_load_from_file(const rt_uint8_t* name, const char* filename) { int fd, length; struct rt_module* module; struct _stat s; char *buffer; stat(filename, &s); buffer = (char *)rt_malloc(s.st_size); fd = open(filename, O_RDONLY, 0); length = read(fd, buffer, s.st_size); if (length <= 0) { rt_kprintf("check: read file failed\n"); close(fd); rt_free(buffer); return RT_NULL; } rt_kprintf("read %d bytes from file\n", length); module = rt_module_load(name, (void *)buffer); rt_free(buffer); close(fd); return module; } #endif /** * This function will unload a module from memory and release resources * * @param module the module to be unloaded * * @return the operation status, RT_EOK on OK; -RT_ERROR on error * */ rt_err_t rt_module_unload(rt_module_t module) { int i; struct rt_object* object; struct rt_list_node *list, *node; #ifdef RT_MODULE_DEBUG rt_kprintf("rt_module_unload %s\n", module->parent.name); #endif /* check parameter */ RT_ASSERT(module != RT_NULL); /* suspend module main thread */ if (module->module_thread->stat == RT_THREAD_READY) rt_thread_suspend(module->module_thread); /* delete all module object */ for(i = RT_Object_Class_Thread; i < RT_Object_Class_Module; i++) { list = &module->module_object[i].object_list; for (node = list->next; node != list; node = node->next) { object = rt_list_entry(node, struct rt_object, list); if (rt_object_is_systemobject(object) == RT_EOK) { /* detach static objcet */ rt_object_detach(object); } else { /* delete dynamic object */ rt_object_delete(object); } } } /* release module memory */ rt_free(module->module_space); rt_object_delete((struct rt_object *)module); return RT_EOK; } /** * This function will find the specified module. * * @param name the name of module finding * * @return the module */ rt_module_t rt_module_find(char* name) { struct rt_object_information *information; struct rt_object* object; struct rt_list_node* node; extern struct rt_object_information rt_object_container[]; /* enter critical */ rt_enter_critical(); /* try to find device object */ information = &rt_object_container[RT_Object_Class_Thread]; for (node = information->object_list.next; node != &(information->object_list); node = node->next) { object = rt_list_entry(node, struct rt_object, list); if (rt_strncmp(object->name, name, RT_NAME_MAX) == 0) { /* leave critical */ rt_exit_critical(); return (rt_module_t)object; } } /* leave critical */ rt_exit_critical(); /* not found */ return RT_NULL; } #if defined(RT_USING_FINSH) #include FINSH_FUNCTION_EXPORT(rt_module_load_from_file, load module from file); #endif #endif