rtt-f030/bsp/imxrt1052-evk/Libraries/drivers/fsl_usdhc.c

1781 lines
61 KiB
C
Raw Normal View History

2017-10-26 15:39:32 +08:00
/*
* Copyright (c) 2016, Freescale Semiconductor, Inc.
* Copyright 2016-2017 NXP
*
* Redistribution and use in source and binary forms, with or without modification,
* are permitted provided that the following conditions are met:
*
* o Redistributions of source code must retain the above copyright notice, this list
* of conditions and the following disclaimer.
*
* o Redistributions in binary form must reproduce the above copyright notice, this
* list of conditions and the following disclaimer in the documentation and/or
* other materials provided with the distribution.
*
* o Neither the name of the copyright holder nor the names of its
* contributors may be used to endorse or promote products derived from this
* software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
* WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
* DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR
* ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
* (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON
* ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
* SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#include "fsl_usdhc.h"
#if defined(FSL_SDK_ENABLE_DRIVER_CACHE_CONTROL) && FSL_SDK_ENABLE_DRIVER_CACHE_CONTROL
#include "fsl_cache.h"
#endif /* FSL_SDK_ENABLE_DRIVER_CACHE_CONTROL */
/*******************************************************************************
* Definitions
******************************************************************************/
/*! @brief Clock setting */
/* Max SD clock divisor from base clock */
#define USDHC_MAX_DVS ((USDHC_SYS_CTRL_DVS_MASK >> USDHC_SYS_CTRL_DVS_SHIFT) + 1U)
#define USDHC_PREV_DVS(x) ((x) -= 1U)
#define USDHC_PREV_CLKFS(x, y) ((x) >>= (y))
/* Typedef for interrupt handler. */
typedef void (*usdhc_isr_t)(USDHC_Type *base, usdhc_handle_t *handle);
/*******************************************************************************
* Prototypes
******************************************************************************/
/*!
* @brief Get the instance.
*
* @param base USDHC peripheral base address.
* @return Instance number.
*/
static uint32_t USDHC_GetInstance(USDHC_Type *base);
/*!
* @brief Set transfer interrupt.
*
* @param base USDHC peripheral base address.
* @param usingInterruptSignal True to use IRQ signal.
*/
static void USDHC_SetTransferInterrupt(USDHC_Type *base, bool usingInterruptSignal);
/*!
* @brief Start transfer according to current transfer state
*
* @param base USDHC peripheral base address.
* @param data Data to be transferred.
* @param flag data present flag
*/
static status_t USDHC_SetDataTransferConfig(USDHC_Type *base, usdhc_data_t *data, uint32_t *dataPresentFlag);
/*!
* @brief Receive command response
*
* @param base USDHC peripheral base address.
* @param command Command to be sent.
*/
static status_t USDHC_ReceiveCommandResponse(USDHC_Type *base, usdhc_command_t *command);
/*!
* @brief Read DATAPORT when buffer enable bit is set.
*
* @param base USDHC peripheral base address.
* @param data Data to be read.
* @param transferredWords The number of data words have been transferred last time transaction.
* @return The number of total data words have been transferred after this time transaction.
*/
static uint32_t USDHC_ReadDataPort(USDHC_Type *base, usdhc_data_t *data, uint32_t transferredWords);
/*!
* @brief Read data by using DATAPORT polling way.
*
* @param base USDHC peripheral base address.
* @param data Data to be read.
* @retval kStatus_Fail Read DATAPORT failed.
* @retval kStatus_Success Operate successfully.
*/
static status_t USDHC_ReadByDataPortBlocking(USDHC_Type *base, usdhc_data_t *data);
/*!
* @brief Write DATAPORT when buffer enable bit is set.
*
* @param base USDHC peripheral base address.
* @param data Data to be read.
* @param transferredWords The number of data words have been transferred last time.
* @return The number of total data words have been transferred after this time transaction.
*/
static uint32_t USDHC_WriteDataPort(USDHC_Type *base, usdhc_data_t *data, uint32_t transferredWords);
/*!
* @brief Write data by using DATAPORT polling way.
*
* @param base USDHC peripheral base address.
* @param data Data to be transferred.
* @retval kStatus_Fail Write DATAPORT failed.
* @retval kStatus_Success Operate successfully.
*/
static status_t USDHC_WriteByDataPortBlocking(USDHC_Type *base, usdhc_data_t *data);
/*!
* @brief Transfer data by polling way.
*
* @param base USDHC peripheral base address.
* @param data Data to be transferred.
* @param use DMA flag.
* @retval kStatus_Fail Transfer data failed.
* @retval kStatus_InvalidArgument Argument is invalid.
* @retval kStatus_Success Operate successfully.
*/
static status_t USDHC_TransferDataBlocking(USDHC_Type *base, usdhc_data_t *data, bool enDMA);
/*!
* @brief Handle card detect interrupt.
*
* @param base USDHC peripheral base address.
* @param handle USDHC handle.
* @param interruptFlags Card detect related interrupt flags.
*/
static void USDHC_TransferHandleCardDetect(USDHC_Type *base, usdhc_handle_t *handle, uint32_t interruptFlags);
/*!
* @brief Handle command interrupt.
*
* @param base USDHC peripheral base address.
* @param handle USDHC handle.
* @param interruptFlags Command related interrupt flags.
*/
static void USDHC_TransferHandleCommand(USDHC_Type *base, usdhc_handle_t *handle, uint32_t interruptFlags);
/*!
* @brief Handle data interrupt.
*
* @param base USDHC peripheral base address.
* @param handle USDHC handle.
* @param interruptFlags Data related interrupt flags.
*/
static void USDHC_TransferHandleData(USDHC_Type *base, usdhc_handle_t *handle, uint32_t interruptFlags);
/*!
* @brief Handle SDIO card interrupt signal.
*
* @param base USDHC peripheral base address.
* @param handle USDHC handle.
*/
static void USDHC_TransferHandleSdioInterrupt(USDHC_Type *base, usdhc_handle_t *handle);
/*!
* @brief Handle SDIO block gap event.
*
* @param base USDHC peripheral base address.
* @param handle USDHC handle.
*/
static void USDHC_TransferHandleBlockGap(USDHC_Type *base, usdhc_handle_t *handle);
/*!
* @brief Handle retuning
*
* @param base USDHC peripheral base address.
* @param handle USDHC handle.
* @param interrupt flags
*/
static void USDHC_TransferHandleReTuning(USDHC_Type *base, usdhc_handle_t *handle, uint32_t interruptFlags);
/*!
* @brief wait command done
*
* @param base USDHC peripheral base address.
* @param command configuration
* @param pollingCmdDone polling command done flag
*/
static status_t USDHC_WaitCommandDone(USDHC_Type *base, usdhc_command_t *command, bool pollingCmdDone);
/*******************************************************************************
* Variables
******************************************************************************/
/*! @brief USDHC base pointer array */
static USDHC_Type *const s_usdhcBase[] = USDHC_BASE_PTRS;
/*! @brief USDHC internal handle pointer array */
static usdhc_handle_t *s_usdhcHandle[ARRAY_SIZE(s_usdhcBase)] = {NULL};
/*! @brief USDHC IRQ name array */
static const IRQn_Type s_usdhcIRQ[] = USDHC_IRQS;
#if !(defined(FSL_SDK_DISABLE_DRIVER_CLOCK_CONTROL) && FSL_SDK_DISABLE_DRIVER_CLOCK_CONTROL)
/*! @brief USDHC clock array name */
static const clock_ip_name_t s_usdhcClock[] = USDHC_CLOCKS;
#endif /* FSL_SDK_DISABLE_DRIVER_CLOCK_CONTROL */
/* USDHC ISR for transactional APIs. */
static usdhc_isr_t s_usdhcIsr;
/*******************************************************************************
* Code
******************************************************************************/
static uint32_t USDHC_GetInstance(USDHC_Type *base)
{
uint8_t instance = 0;
while ((instance < ARRAY_SIZE(s_usdhcBase)) && (s_usdhcBase[instance] != base))
{
instance++;
}
assert(instance < ARRAY_SIZE(s_usdhcBase));
return instance;
}
static void USDHC_SetTransferInterrupt(USDHC_Type *base, bool usingInterruptSignal)
{
uint32_t interruptEnabled; /* The Interrupt status flags to be enabled */
/* Disable all interrupts */
USDHC_DisableInterruptStatus(base, (uint32_t)kUSDHC_AllInterruptFlags);
USDHC_DisableInterruptSignal(base, (uint32_t)kUSDHC_AllInterruptFlags);
DisableIRQ(s_usdhcIRQ[USDHC_GetInstance(base)]);
interruptEnabled = (kUSDHC_CommandFlag | kUSDHC_CardInsertionFlag | kUSDHC_DataFlag | kUSDHC_CardRemovalFlag |
kUSDHC_SDR104TuningFlag | kUSDHC_BlockGapEventFlag);
USDHC_EnableInterruptStatus(base, interruptEnabled);
if (usingInterruptSignal)
{
USDHC_EnableInterruptSignal(base, interruptEnabled);
}
}
static status_t USDHC_SetDataTransferConfig(USDHC_Type *base, usdhc_data_t *data, uint32_t *dataPresentFlag)
{
uint32_t mixCtrl = base->MIX_CTRL;
if (data != NULL)
{
/* if transfer boot continous, only need set the CREQ bit, leave others as it is */
if (data->dataType == kUSDHC_TransferDataBootcontinous)
{
/* clear stop at block gap request */
base->PROT_CTRL &= ~USDHC_PROT_CTRL_SABGREQ_MASK;
/* continous transfer data */
base->PROT_CTRL |= USDHC_PROT_CTRL_CREQ_MASK;
return kStatus_Success;
}
/* check data inhibit flag */
if (base->PRES_STATE & kUSDHC_DataInhibitFlag)
{
return kStatus_USDHC_BusyTransferring;
}
/* check transfer block count */
if ((data->blockCount > USDHC_MAX_BLOCK_COUNT))
{
return kStatus_InvalidArgument;
}
/* config mix parameter */
mixCtrl &= ~(USDHC_MIX_CTRL_MSBSEL_MASK | USDHC_MIX_CTRL_BCEN_MASK | USDHC_MIX_CTRL_DTDSEL_MASK |
USDHC_MIX_CTRL_AC12EN_MASK);
if (data->rxData)
{
mixCtrl |= USDHC_MIX_CTRL_DTDSEL_MASK;
}
if (data->blockCount > 1U)
{
mixCtrl |= USDHC_MIX_CTRL_MSBSEL_MASK | USDHC_MIX_CTRL_BCEN_MASK;
/* auto command 12 */
if (data->enableAutoCommand12)
{
mixCtrl |= USDHC_MIX_CTRL_AC12EN_MASK;
}
}
/* auto command 23, auto send set block count cmd before multiple read/write */
if ((data->enableAutoCommand23))
{
mixCtrl |= USDHC_MIX_CTRL_AC23EN_MASK;
base->VEND_SPEC2 |= USDHC_VEND_SPEC2_ACMD23_ARGU2_EN_MASK;
/* config the block count to DS_ADDR */
base->DS_ADDR = data->blockCount;
}
else
{
mixCtrl &= ~USDHC_MIX_CTRL_AC23EN_MASK;
base->VEND_SPEC2 &= ~USDHC_VEND_SPEC2_ACMD23_ARGU2_EN_MASK;
}
/* if transfer boot data, leave the block count to USDHC_SetMmcBootConfig function */
if (data->dataType != kUSDHC_TransferDataBoot)
{
/* config data block size/block count */
base->BLK_ATT = ((base->BLK_ATT & ~(USDHC_BLK_ATT_BLKSIZE_MASK | USDHC_BLK_ATT_BLKCNT_MASK)) |
(USDHC_BLK_ATT_BLKSIZE(data->blockSize) | USDHC_BLK_ATT_BLKCNT(data->blockCount)));
}
else
{
mixCtrl |= USDHC_MIX_CTRL_MSBSEL_MASK | USDHC_MIX_CTRL_BCEN_MASK;
base->PROT_CTRL |= USDHC_PROT_CTRL_RD_DONE_NO_8CLK_MASK;
}
/* data present flag */
*dataPresentFlag |= kUSDHC_DataPresentFlag;
}
else
{
/* clear data flags */
mixCtrl &= ~(USDHC_MIX_CTRL_MSBSEL_MASK | USDHC_MIX_CTRL_BCEN_MASK | USDHC_MIX_CTRL_DTDSEL_MASK |
USDHC_MIX_CTRL_AC12EN_MASK);
}
/* config the mix parameter */
base->MIX_CTRL = mixCtrl;
return kStatus_Success;
}
static status_t USDHC_ReceiveCommandResponse(USDHC_Type *base, usdhc_command_t *command)
{
uint32_t i;
if (command->responseType != kCARD_ResponseTypeNone)
{
command->response[0U] = base->CMD_RSP0;
if (command->responseType == kCARD_ResponseTypeR2)
{
command->response[1U] = base->CMD_RSP1;
command->response[2U] = base->CMD_RSP2;
command->response[3U] = base->CMD_RSP3;
i = 4U;
/* R3-R2-R1-R0(lowest 8 bit is invalid bit) has the same format as R2 format in SD specification document
after removed internal CRC7 and end bit. */
do
{
command->response[i - 1U] <<= 8U;
if (i > 1U)
{
command->response[i - 1U] |= ((command->response[i - 2U] & 0xFF000000U) >> 24U);
}
} while (i--);
}
}
/* check response error flag */
if ((command->responseErrorFlags != 0U) &&
((command->responseType == kCARD_ResponseTypeR1) || (command->responseType == kCARD_ResponseTypeR1b) ||
(command->responseType == kCARD_ResponseTypeR6) || (command->responseType == kCARD_ResponseTypeR5)))
{
if (((command->responseErrorFlags) & (command->response[0U])) != 0U)
{
return kStatus_USDHC_SendCommandFailed;
}
}
return kStatus_Success;
}
static uint32_t USDHC_ReadDataPort(USDHC_Type *base, usdhc_data_t *data, uint32_t transferredWords)
{
uint32_t i;
uint32_t totalWords;
uint32_t wordsCanBeRead; /* The words can be read at this time. */
uint32_t readWatermark = ((base->WTMK_LVL & USDHC_WTMK_LVL_RD_WML_MASK) >> USDHC_WTMK_LVL_RD_WML_SHIFT);
/* If DMA is enable, do not need to polling data port */
if ((base->MIX_CTRL & USDHC_MIX_CTRL_DMAEN_MASK) == 0U)
{
/*
* Add non aligned access support ,user need make sure your buffer size is big
* enough to hold the data,in other words,user need make sure the buffer size
* is 4 byte aligned
*/
if (data->blockSize % sizeof(uint32_t) != 0U)
{
data->blockSize +=
sizeof(uint32_t) - (data->blockSize % sizeof(uint32_t)); /* make the block size as word-aligned */
}
totalWords = ((data->blockCount * data->blockSize) / sizeof(uint32_t));
/* If watermark level is equal or bigger than totalWords, transfers totalWords data. */
if (readWatermark >= totalWords)
{
wordsCanBeRead = totalWords;
}
/* If watermark level is less than totalWords and left words to be sent is equal or bigger than readWatermark,
transfers watermark level words. */
else if ((readWatermark < totalWords) && ((totalWords - transferredWords) >= readWatermark))
{
wordsCanBeRead = readWatermark;
}
/* If watermark level is less than totalWords and left words to be sent is less than readWatermark, transfers
left
words. */
else
{
wordsCanBeRead = (totalWords - transferredWords);
}
i = 0U;
while (i < wordsCanBeRead)
{
data->rxData[transferredWords++] = USDHC_ReadData(base);
i++;
}
}
return transferredWords;
}
static status_t USDHC_ReadByDataPortBlocking(USDHC_Type *base, usdhc_data_t *data)
{
uint32_t totalWords;
uint32_t transferredWords = 0U, interruptStatus = 0U;
status_t error = kStatus_Success;
/*
* Add non aligned access support ,user need make sure your buffer size is big
* enough to hold the data,in other words,user need make sure the buffer size
* is 4 byte aligned
*/
if (data->blockSize % sizeof(uint32_t) != 0U)
{
data->blockSize +=
sizeof(uint32_t) - (data->blockSize % sizeof(uint32_t)); /* make the block size as word-aligned */
}
totalWords = ((data->blockCount * data->blockSize) / sizeof(uint32_t));
while ((error == kStatus_Success) && (transferredWords < totalWords))
{
while (!(USDHC_GetInterruptStatusFlags(base) &
(kUSDHC_BufferReadReadyFlag | kUSDHC_DataErrorFlag | kUSDHC_TuningErrorFlag)))
{
}
interruptStatus = USDHC_GetInterruptStatusFlags(base);
/* during std tuning process, software do not need to read data, but wait BRR is enough */
if ((data->dataType == kUSDHC_TransferDataTuning) && (interruptStatus & kUSDHC_BufferReadReadyFlag))
{
USDHC_ClearInterruptStatusFlags(base, kUSDHC_BufferReadReadyFlag | kUSDHC_TuningPassFlag);
return kStatus_Success;
}
else if ((interruptStatus & kUSDHC_TuningErrorFlag) != 0U)
{
USDHC_ClearInterruptStatusFlags(base, kUSDHC_TuningErrorFlag);
/* if tuning error occur ,return directly */
error = kStatus_USDHC_TuningError;
}
else if ((interruptStatus & kUSDHC_DataErrorFlag) != 0U)
{
if (!(data->enableIgnoreError))
{
error = kStatus_Fail;
}
/* clear data error flag */
USDHC_ClearInterruptStatusFlags(base, kUSDHC_DataErrorFlag);
}
else
{
}
if (error == kStatus_Success)
{
transferredWords = USDHC_ReadDataPort(base, data, transferredWords);
/* clear buffer read ready */
USDHC_ClearInterruptStatusFlags(base, kUSDHC_BufferReadReadyFlag);
}
}
/* Clear data complete flag after the last read operation. */
USDHC_ClearInterruptStatusFlags(base, kUSDHC_DataCompleteFlag);
return error;
}
static uint32_t USDHC_WriteDataPort(USDHC_Type *base, usdhc_data_t *data, uint32_t transferredWords)
{
uint32_t i;
uint32_t totalWords;
uint32_t wordsCanBeWrote; /* Words can be wrote at this time. */
uint32_t writeWatermark = ((base->WTMK_LVL & USDHC_WTMK_LVL_WR_WML_MASK) >> USDHC_WTMK_LVL_WR_WML_SHIFT);
/* If DMA is enable, do not need to polling data port */
if ((base->MIX_CTRL & USDHC_MIX_CTRL_DMAEN_MASK) == 0U)
{
/*
* Add non aligned access support ,user need make sure your buffer size is big
* enough to hold the data,in other words,user need make sure the buffer size
* is 4 byte aligned
*/
if (data->blockSize % sizeof(uint32_t) != 0U)
{
data->blockSize +=
sizeof(uint32_t) - (data->blockSize % sizeof(uint32_t)); /* make the block size as word-aligned */
}
totalWords = ((data->blockCount * data->blockSize) / sizeof(uint32_t));
/* If watermark level is equal or bigger than totalWords, transfers totalWords data.*/
if (writeWatermark >= totalWords)
{
wordsCanBeWrote = totalWords;
}
/* If watermark level is less than totalWords and left words to be sent is equal or bigger than watermark,
transfers watermark level words. */
else if ((writeWatermark < totalWords) && ((totalWords - transferredWords) >= writeWatermark))
{
wordsCanBeWrote = writeWatermark;
}
/* If watermark level is less than totalWords and left words to be sent is less than watermark, transfers left
words. */
else
{
wordsCanBeWrote = (totalWords - transferredWords);
}
i = 0U;
while (i < wordsCanBeWrote)
{
USDHC_WriteData(base, data->txData[transferredWords++]);
i++;
}
}
return transferredWords;
}
static status_t USDHC_WriteByDataPortBlocking(USDHC_Type *base, usdhc_data_t *data)
{
uint32_t totalWords;
uint32_t transferredWords = 0U, interruptStatus = 0U;
status_t error = kStatus_Success;
/*
* Add non aligned access support ,user need make sure your buffer size is big
* enough to hold the data,in other words,user need make sure the buffer size
* is 4 byte aligned
*/
if (data->blockSize % sizeof(uint32_t) != 0U)
{
data->blockSize +=
sizeof(uint32_t) - (data->blockSize % sizeof(uint32_t)); /* make the block size as word-aligned */
}
totalWords = (data->blockCount * data->blockSize) / sizeof(uint32_t);
while ((error == kStatus_Success) && (transferredWords < totalWords))
{
while (!(USDHC_GetInterruptStatusFlags(base) &
(kUSDHC_BufferWriteReadyFlag | kUSDHC_DataErrorFlag | kUSDHC_TuningErrorFlag)))
{
}
interruptStatus = USDHC_GetInterruptStatusFlags(base);
if ((interruptStatus & kUSDHC_TuningErrorFlag) != 0U)
{
USDHC_ClearInterruptStatusFlags(base, kUSDHC_TuningErrorFlag);
/* if tuning error occur ,return directly */
return kStatus_USDHC_TuningError;
}
else if ((interruptStatus & kUSDHC_DataErrorFlag) != 0U)
{
if (!(data->enableIgnoreError))
{
error = kStatus_Fail;
}
/* clear data error flag */
USDHC_ClearInterruptStatusFlags(base, kUSDHC_DataErrorFlag);
}
else
{
}
if (error == kStatus_Success)
{
transferredWords = USDHC_WriteDataPort(base, data, transferredWords);
/* clear buffer write ready */
USDHC_ClearInterruptStatusFlags(base, kUSDHC_BufferWriteReadyFlag);
}
}
/* Wait write data complete or data transfer error after the last writing operation. */
while (!(USDHC_GetInterruptStatusFlags(base) & (kUSDHC_DataCompleteFlag | kUSDHC_DataErrorFlag)))
{
}
if ((USDHC_GetInterruptStatusFlags(base) & kUSDHC_DataErrorFlag) != 0U)
{
if (!(data->enableIgnoreError))
{
error = kStatus_Fail;
}
}
USDHC_ClearInterruptStatusFlags(base, (kUSDHC_DataCompleteFlag | kUSDHC_DataErrorFlag));
return error;
}
void USDHC_SendCommand(USDHC_Type *base, usdhc_command_t *command)
{
assert(NULL != command);
uint32_t xferType = base->CMD_XFR_TYP, flags = command->flags;
if (((base->PRES_STATE & kUSDHC_CommandInhibitFlag) == 0U) && (command->type != kCARD_CommandTypeEmpty))
{
/* Define the flag corresponding to each response type. */
switch (command->responseType)
{
case kCARD_ResponseTypeNone:
break;
case kCARD_ResponseTypeR1: /* Response 1 */
case kCARD_ResponseTypeR5: /* Response 5 */
case kCARD_ResponseTypeR6: /* Response 6 */
case kCARD_ResponseTypeR7: /* Response 7 */
flags |= (kUSDHC_ResponseLength48Flag | kUSDHC_EnableCrcCheckFlag | kUSDHC_EnableIndexCheckFlag);
break;
case kCARD_ResponseTypeR1b: /* Response 1 with busy */
case kCARD_ResponseTypeR5b: /* Response 5 with busy */
flags |= (kUSDHC_ResponseLength48BusyFlag | kUSDHC_EnableCrcCheckFlag | kUSDHC_EnableIndexCheckFlag);
break;
case kCARD_ResponseTypeR2: /* Response 2 */
flags |= (kUSDHC_ResponseLength136Flag | kUSDHC_EnableCrcCheckFlag);
break;
case kCARD_ResponseTypeR3: /* Response 3 */
case kCARD_ResponseTypeR4: /* Response 4 */
flags |= (kUSDHC_ResponseLength48Flag);
break;
default:
break;
}
if (command->type == kCARD_CommandTypeAbort)
{
flags |= kUSDHC_CommandTypeAbortFlag;
}
/* config cmd index */
xferType &= ~(USDHC_CMD_XFR_TYP_CMDINX_MASK | USDHC_CMD_XFR_TYP_CMDTYP_MASK | USDHC_CMD_XFR_TYP_CICEN_MASK |
USDHC_CMD_XFR_TYP_CCCEN_MASK | USDHC_CMD_XFR_TYP_RSPTYP_MASK | USDHC_CMD_XFR_TYP_DPSEL_MASK);
xferType |=
(((command->index << USDHC_CMD_XFR_TYP_CMDINX_SHIFT) & USDHC_CMD_XFR_TYP_CMDINX_MASK) |
((flags) & (USDHC_CMD_XFR_TYP_CMDTYP_MASK | USDHC_CMD_XFR_TYP_CICEN_MASK | USDHC_CMD_XFR_TYP_CCCEN_MASK |
USDHC_CMD_XFR_TYP_RSPTYP_MASK | USDHC_CMD_XFR_TYP_DPSEL_MASK)));
/* config the command xfertype and argument */
base->CMD_ARG = command->argument;
base->CMD_XFR_TYP = xferType;
}
if (command->type == kCARD_CommandTypeEmpty)
{
/* disable CMD done interrupt for empty command */
base->INT_SIGNAL_EN &= ~USDHC_INT_SIGNAL_EN_CCIEN_MASK;
}
}
static status_t USDHC_WaitCommandDone(USDHC_Type *base, usdhc_command_t *command, bool pollingCmdDone)
{
assert(NULL != command);
status_t error = kStatus_Success;
uint32_t interruptStatus = 0U;
/* check if need polling command done or not */
if (pollingCmdDone)
{
/* Wait command complete or USDHC encounters error. */
while (!(USDHC_GetInterruptStatusFlags(base) & (kUSDHC_CommandCompleteFlag | kUSDHC_CommandErrorFlag)))
{
}
interruptStatus = USDHC_GetInterruptStatusFlags(base);
if ((interruptStatus & kUSDHC_TuningErrorFlag) != 0U)
{
error = kStatus_USDHC_TuningError;
}
else if ((interruptStatus & kUSDHC_CommandErrorFlag) != 0U)
{
error = kStatus_Fail;
}
else
{
}
/* Receive response when command completes successfully. */
if (error == kStatus_Success)
{
error = USDHC_ReceiveCommandResponse(base, command);
}
USDHC_ClearInterruptStatusFlags(
base, (kUSDHC_CommandCompleteFlag | kUSDHC_CommandErrorFlag | kUSDHC_TuningErrorFlag));
}
return error;
}
static status_t USDHC_TransferDataBlocking(USDHC_Type *base, usdhc_data_t *data, bool enDMA)
{
status_t error = kStatus_Success;
uint32_t interruptStatus = 0U;
if (enDMA)
{
/* Wait data complete or USDHC encounters error. */
while (!(USDHC_GetInterruptStatusFlags(base) &
(kUSDHC_DataCompleteFlag | kUSDHC_DataErrorFlag | kUSDHC_DmaErrorFlag | kUSDHC_TuningErrorFlag)))
{
}
interruptStatus = USDHC_GetInterruptStatusFlags(base);
if ((interruptStatus & kUSDHC_TuningErrorFlag) != 0U)
{
error = kStatus_USDHC_TuningError;
}
else if ((interruptStatus & (kUSDHC_DataErrorFlag | kUSDHC_DmaErrorFlag)) != 0U)
{
if ((!(data->enableIgnoreError)) || (interruptStatus & kUSDHC_DataTimeoutFlag))
{
error = kStatus_Fail;
}
}
else
{
}
USDHC_ClearInterruptStatusFlags(base, (kUSDHC_DataCompleteFlag | kUSDHC_DataErrorFlag | kUSDHC_DmaErrorFlag |
kUSDHC_TuningPassFlag | kUSDHC_TuningErrorFlag));
}
else
{
if (data->rxData)
{
error = USDHC_ReadByDataPortBlocking(base, data);
}
else
{
error = USDHC_WriteByDataPortBlocking(base, data);
}
}
#if defined(FSL_SDK_ENABLE_DRIVER_CACHE_CONTROL) && FSL_SDK_ENABLE_DRIVER_CACHE_CONTROL
/* invalidate cache for read */
if ((data != NULL) && (data->rxData != NULL) && (data->dataType != kUSDHC_TransferDataTuning))
{
/* invalidate the DCACHE */
DCACHE_InvalidateByRange((uint32_t)data->rxData, (data->blockSize) * (data->blockCount));
}
#endif
return error;
}
void USDHC_Init(USDHC_Type *base, const usdhc_config_t *config)
{
assert(config);
assert((config->writeWatermarkLevel >= 1U) && (config->writeWatermarkLevel <= 128U));
assert((config->readWatermarkLevel >= 1U) && (config->readWatermarkLevel <= 128U));
assert(config->writeBurstLen <= 16U);
uint32_t proctl, sysctl, wml;
/* Enable USDHC clock. */
CLOCK_EnableClock(s_usdhcClock[USDHC_GetInstance(base)]);
/* Reset USDHC. */
USDHC_Reset(base, kUSDHC_ResetAll, 100U);
proctl = base->PROT_CTRL;
wml = base->WTMK_LVL;
sysctl = base->SYS_CTRL;
proctl &= ~(USDHC_PROT_CTRL_EMODE_MASK | USDHC_PROT_CTRL_DMASEL_MASK);
/* Endian mode*/
proctl |= USDHC_PROT_CTRL_EMODE(config->endianMode);
/* Watermark level */
wml &= ~(USDHC_WTMK_LVL_RD_WML_MASK | USDHC_WTMK_LVL_WR_WML_MASK | USDHC_WTMK_LVL_RD_BRST_LEN_MASK |
USDHC_WTMK_LVL_WR_BRST_LEN_MASK);
wml |= (USDHC_WTMK_LVL_RD_WML(config->readWatermarkLevel) | USDHC_WTMK_LVL_WR_WML(config->writeWatermarkLevel) |
USDHC_WTMK_LVL_RD_BRST_LEN(config->readBurstLen) | USDHC_WTMK_LVL_WR_BRST_LEN(config->writeBurstLen));
/* config the data timeout value */
sysctl &= ~USDHC_SYS_CTRL_DTOCV_MASK;
sysctl |= USDHC_SYS_CTRL_DTOCV(config->dataTimeout);
base->SYS_CTRL = sysctl;
base->WTMK_LVL = wml;
base->PROT_CTRL = proctl;
#if FSL_FEATURE_USDHC_HAS_EXT_DMA
/* disable external DMA */
base->VEND_SPEC &= ~USDHC_VEND_SPEC_EXT_DMA_EN_MASK;
#endif
/* disable internal DMA and DDR mode */
base->MIX_CTRL &= ~(USDHC_MIX_CTRL_DMAEN_MASK | USDHC_MIX_CTRL_DDR_EN_MASK);
/* Enable interrupt status but doesn't enable interrupt signal. */
USDHC_SetTransferInterrupt(base, false);
}
void USDHC_Deinit(USDHC_Type *base)
{
/* Disable clock. */
CLOCK_DisableClock(s_usdhcClock[USDHC_GetInstance(base)]);
}
bool USDHC_Reset(USDHC_Type *base, uint32_t mask, uint32_t timeout)
{
base->SYS_CTRL |= (mask & (USDHC_SYS_CTRL_RSTA_MASK | USDHC_SYS_CTRL_RSTC_MASK | USDHC_SYS_CTRL_RSTD_MASK));
/* Delay some time to wait reset success. */
while ((base->SYS_CTRL & mask) != 0U)
{
if (timeout == 0U)
{
break;
}
timeout--;
}
return ((!timeout) ? false : true);
}
void USDHC_GetCapability(USDHC_Type *base, usdhc_capability_t *capability)
{
assert(capability);
uint32_t htCapability;
uint32_t maxBlockLength;
htCapability = base->HOST_CTRL_CAP;
/* Get the capability of USDHC. */
maxBlockLength = ((htCapability & USDHC_HOST_CTRL_CAP_MBL_MASK) >> USDHC_HOST_CTRL_CAP_MBL_SHIFT);
capability->maxBlockLength = (512U << maxBlockLength);
/* Other attributes not in HTCAPBLT register. */
capability->maxBlockCount = USDHC_MAX_BLOCK_COUNT;
capability->flags = (htCapability & (kUSDHC_SupportAdmaFlag | kUSDHC_SupportHighSpeedFlag | kUSDHC_SupportDmaFlag |
kUSDHC_SupportSuspendResumeFlag | kUSDHC_SupportV330Flag));
capability->flags |= (htCapability & kUSDHC_SupportV300Flag);
capability->flags |= (htCapability & kUSDHC_SupportV180Flag);
capability->flags |=
(htCapability & (kUSDHC_SupportDDR50Flag | kUSDHC_SupportSDR104Flag | kUSDHC_SupportSDR50Flag));
/* USDHC support 4/8 bit data bus width. */
capability->flags |= (kUSDHC_Support4BitFlag | kUSDHC_Support8BitFlag);
}
uint32_t USDHC_SetSdClock(USDHC_Type *base, uint32_t srcClock_Hz, uint32_t busClock_Hz)
{
assert(srcClock_Hz != 0U);
assert((busClock_Hz != 0U) && (busClock_Hz <= srcClock_Hz));
uint32_t totalDiv = 0U;
uint32_t divisor = 0U;
uint32_t prescaler = 0U;
uint32_t sysctl = 0U;
uint32_t nearestFrequency = 0U;
uint32_t maxClKFS = ((USDHC_SYS_CTRL_SDCLKFS_MASK >> USDHC_SYS_CTRL_SDCLKFS_SHIFT) + 1U);
bool enDDR = false;
/* DDR mode max clkfs can reach 512 */
if ((base->MIX_CTRL & USDHC_MIX_CTRL_DDR_EN_MASK) != 0U)
{
enDDR = true;
maxClKFS *= 2U;
}
/* calucate total divisor first */
totalDiv = srcClock_Hz / busClock_Hz;
if (totalDiv != 0U)
{
/* calucate the divisor (srcClock_Hz / divisor) <= busClock_Hz */
if ((srcClock_Hz / totalDiv) > busClock_Hz)
{
totalDiv++;
}
/* divide the total divisor to div and prescaler */
if (totalDiv > USDHC_MAX_DVS)
{
prescaler = totalDiv / USDHC_MAX_DVS;
/* prescaler must be a value which equal 2^n and smaller than SDHC_MAX_CLKFS */
while (((maxClKFS % prescaler) != 0U) || (prescaler == 1U))
{
prescaler++;
}
/* calucate the divisor */
divisor = totalDiv / prescaler;
/* fine tuning the divisor until divisor * prescaler >= totalDiv */
while ((divisor * prescaler) < totalDiv)
{
divisor++;
}
nearestFrequency = srcClock_Hz / divisor / prescaler;
}
else
{
/* in this situation , divsior and SDCLKFS can generate same clock
use SDCLKFS*/
if ((USDHC_MAX_DVS % totalDiv) == 0U)
{
divisor = 0U;
prescaler = totalDiv;
}
else
{
divisor = totalDiv;
prescaler = 0U;
}
nearestFrequency = srcClock_Hz / totalDiv;
}
}
/* in this condition , srcClock_Hz = busClock_Hz, */
else
{
/* in DDR mode , set SDCLKFS to 0, divisor = 0, actually the
totoal divider = 2U */
divisor = 0U;
prescaler = 0U;
nearestFrequency = srcClock_Hz;
}
/* calucate the value write to register */
if (divisor != 0U)
{
USDHC_PREV_DVS(divisor);
}
/* calucate the value write to register */
if (prescaler != 0U)
{
USDHC_PREV_CLKFS(prescaler, (enDDR ? 2U : 1U));
}
/* Set the SD clock frequency divisor, SD clock frequency select, data timeout counter value. */
sysctl = base->SYS_CTRL;
sysctl &= ~(USDHC_SYS_CTRL_DVS_MASK | USDHC_SYS_CTRL_SDCLKFS_MASK);
sysctl |= (USDHC_SYS_CTRL_DVS(divisor) | USDHC_SYS_CTRL_SDCLKFS(prescaler));
base->SYS_CTRL = sysctl;
/* Wait until the SD clock is stable. */
while (!(base->PRES_STATE & USDHC_PRES_STATE_SDSTB_MASK))
{
}
return nearestFrequency;
}
bool USDHC_SetCardActive(USDHC_Type *base, uint32_t timeout)
{
base->SYS_CTRL |= USDHC_SYS_CTRL_INITA_MASK;
/* Delay some time to wait card become active state. */
while ((base->SYS_CTRL & USDHC_SYS_CTRL_INITA_MASK) == USDHC_SYS_CTRL_INITA_MASK)
{
if (!timeout)
{
break;
}
timeout--;
}
return ((!timeout) ? false : true);
}
void USDHC_SetMmcBootConfig(USDHC_Type *base, const usdhc_boot_config_t *config)
{
assert(config);
assert(config->ackTimeoutCount <= (USDHC_MMC_BOOT_DTOCV_ACK_MASK >> USDHC_MMC_BOOT_DTOCV_ACK_SHIFT));
assert(config->blockCount <= (USDHC_MMC_BOOT_BOOT_BLK_CNT_MASK >> USDHC_MMC_BOOT_BOOT_BLK_CNT_SHIFT));
uint32_t mmcboot = base->MMC_BOOT;
mmcboot &= ~(USDHC_MMC_BOOT_DTOCV_ACK_MASK | USDHC_MMC_BOOT_BOOT_MODE_MASK | USDHC_MMC_BOOT_BOOT_BLK_CNT_MASK);
mmcboot |= USDHC_MMC_BOOT_DTOCV_ACK(config->ackTimeoutCount) | USDHC_MMC_BOOT_BOOT_MODE(config->bootMode);
if (config->enableBootAck)
{
mmcboot |= USDHC_MMC_BOOT_BOOT_ACK_MASK;
}
if (config->enableAutoStopAtBlockGap)
{
mmcboot |=
USDHC_MMC_BOOT_AUTO_SABG_EN_MASK | USDHC_MMC_BOOT_BOOT_BLK_CNT(USDHC_MAX_BLOCK_COUNT - config->blockCount);
/* always set the block count to USDHC_MAX_BLOCK_COUNT to use auto stop at block gap feature */
base->BLK_ATT = ((base->BLK_ATT & ~(USDHC_BLK_ATT_BLKSIZE_MASK | USDHC_BLK_ATT_BLKCNT_MASK)) |
(USDHC_BLK_ATT_BLKSIZE(config->blockSize) | USDHC_BLK_ATT_BLKCNT(USDHC_MAX_BLOCK_COUNT)));
}
else
{
base->BLK_ATT = ((base->BLK_ATT & ~(USDHC_BLK_ATT_BLKSIZE_MASK | USDHC_BLK_ATT_BLKCNT_MASK)) |
(USDHC_BLK_ATT_BLKSIZE(config->blockSize) | USDHC_BLK_ATT_BLKCNT(config->blockCount)));
}
base->MMC_BOOT = mmcboot;
}
status_t USDHC_SetADMA1Descriptor(
uint32_t *admaTable, uint32_t admaTableWords, const uint32_t *dataBufferAddr, uint32_t dataBytes, uint32_t flags)
{
assert(NULL != admaTable);
assert(NULL != dataBufferAddr);
uint32_t miniEntries, startEntries = 0U,
maxEntries = (admaTableWords * sizeof(uint32_t)) / sizeof(usdhc_adma1_descriptor_t);
usdhc_adma1_descriptor_t *adma1EntryAddress = (usdhc_adma1_descriptor_t *)(admaTable);
uint32_t i, dmaBufferLen = 0U;
const uint32_t *data = dataBufferAddr;
if (((uint32_t)data % USDHC_ADMA1_ADDRESS_ALIGN) != 0U)
{
return kStatus_USDHC_DMADataAddrNotAlign;
}
/*
* Add non aligned access support ,user need make sure your buffer size is big
* enough to hold the data,in other words,user need make sure the buffer size
* is 4 byte aligned
*/
if (dataBytes % sizeof(uint32_t) != 0U)
{
/* make the data length as word-aligned */
dataBytes += sizeof(uint32_t) - (dataBytes % sizeof(uint32_t));
}
/* Check if ADMA descriptor's number is enough. */
if ((dataBytes % USDHC_ADMA1_DESCRIPTOR_MAX_LENGTH_PER_ENTRY) == 0U)
{
miniEntries = dataBytes / USDHC_ADMA1_DESCRIPTOR_MAX_LENGTH_PER_ENTRY;
}
else
{
miniEntries = ((dataBytes / USDHC_ADMA1_DESCRIPTOR_MAX_LENGTH_PER_ENTRY) + 1U);
}
/* calucate the start entry for multiple descriptor mode, ADMA engine is not stop, so update the descriptor
data adress and data size is enough */
if (flags == kUSDHC_AdmaDescriptorMultipleFlag)
{
for (i = 0U; i < maxEntries; i++)
{
if ((adma1EntryAddress[i] & kUSDHC_Adma1DescriptorValidFlag) == 0U)
{
startEntries = i;
break;
}
}
}
/* ADMA1 needs two descriptors to finish a transfer */
miniEntries <<= 1U;
if (miniEntries + startEntries > maxEntries)
{
return kStatus_OutOfRange;
}
for (i = startEntries; i < (flags == kUSDHC_AdmaDescriptorSingleFlag ? (miniEntries + startEntries) : maxEntries);
i += 2U)
{
if (dataBytes > USDHC_ADMA1_DESCRIPTOR_MAX_LENGTH_PER_ENTRY)
{
dmaBufferLen = USDHC_ADMA1_DESCRIPTOR_MAX_LENGTH_PER_ENTRY;
}
else
{
dmaBufferLen = (dataBytes == 0U ? sizeof(uint32_t) :
dataBytes); /* adma don't support 0 data length transfer descriptor */
}
adma1EntryAddress[i] = (dmaBufferLen << USDHC_ADMA1_DESCRIPTOR_LENGTH_SHIFT);
adma1EntryAddress[i] |= kUSDHC_Adma1DescriptorTypeSetLength;
adma1EntryAddress[i + 1U] = ((uint32_t)(data) << USDHC_ADMA1_DESCRIPTOR_ADDRESS_SHIFT);
adma1EntryAddress[i + 1U] |= (dataBytes == 0U) ? 0U : kUSDHC_Adma1DescriptorTypeTransfer;
data += dmaBufferLen / sizeof(uint32_t);
if (dataBytes != 0U)
{
dataBytes -= dmaBufferLen;
}
}
/* the end of the descriptor */
adma1EntryAddress[i - 1U] |= kUSDHC_Adma1DescriptorEndFlag;
/* add a dummy valid ADMA descriptor for multiple descriptor mode, this is useful when transfer boot data, the ADMA
engine
will not stop at block gap */
if (flags == kUSDHC_AdmaDescriptorMultipleFlag)
{
adma1EntryAddress[miniEntries + startEntries] |= kUSDHC_Adma1DescriptorTypeTransfer;
}
return kStatus_Success;
}
status_t USDHC_SetADMA2Descriptor(
uint32_t *admaTable, uint32_t admaTableWords, const uint32_t *dataBufferAddr, uint32_t dataBytes, uint32_t flags)
{
assert(NULL != admaTable);
assert(NULL != dataBufferAddr);
uint32_t miniEntries, startEntries = 0U,
maxEntries = (admaTableWords * sizeof(uint32_t)) / sizeof(usdhc_adma2_descriptor_t);
usdhc_adma2_descriptor_t *adma2EntryAddress = (usdhc_adma2_descriptor_t *)(admaTable);
uint32_t i, dmaBufferLen = 0U;
const uint32_t *data = dataBufferAddr;
if (((uint32_t)data % USDHC_ADMA2_ADDRESS_ALIGN) != 0U)
{
return kStatus_USDHC_DMADataAddrNotAlign;
}
/*
* Add non aligned access support ,user need make sure your buffer size is big
* enough to hold the data,in other words,user need make sure the buffer size
* is 4 byte aligned
*/
if (dataBytes % sizeof(uint32_t) != 0U)
{
/* make the data length as word-aligned */
dataBytes += sizeof(uint32_t) - (dataBytes % sizeof(uint32_t));
}
/* Check if ADMA descriptor's number is enough. */
if ((dataBytes % USDHC_ADMA2_DESCRIPTOR_MAX_LENGTH_PER_ENTRY) == 0U)
{
miniEntries = dataBytes / USDHC_ADMA2_DESCRIPTOR_MAX_LENGTH_PER_ENTRY;
}
else
{
miniEntries = ((dataBytes / USDHC_ADMA2_DESCRIPTOR_MAX_LENGTH_PER_ENTRY) + 1U);
}
/* calucate the start entry for multiple descriptor mode, ADMA engine is not stop, so update the descriptor
data adress and data size is enough */
if (flags == kUSDHC_AdmaDescriptorMultipleFlag)
{
for (i = 0U; i < maxEntries; i++)
{
if ((adma2EntryAddress[i].attribute & kUSDHC_Adma2DescriptorValidFlag) == 0U)
{
startEntries = i;
break;
}
}
}
if ((miniEntries + startEntries) > maxEntries)
{
return kStatus_OutOfRange;
}
for (i = startEntries; i < (flags == kUSDHC_AdmaDescriptorSingleFlag ? (miniEntries + startEntries) : maxEntries);
i++)
{
if (dataBytes > USDHC_ADMA2_DESCRIPTOR_MAX_LENGTH_PER_ENTRY)
{
dmaBufferLen = USDHC_ADMA2_DESCRIPTOR_MAX_LENGTH_PER_ENTRY;
}
else
{
dmaBufferLen = (dataBytes == 0U ? sizeof(uint32_t) :
dataBytes); /* adma don't support 0 data length transfer descriptor */
}
/* Each descriptor for ADMA2 is 64-bit in length */
adma2EntryAddress[i].address = data;
adma2EntryAddress[i].attribute = (dmaBufferLen << USDHC_ADMA2_DESCRIPTOR_LENGTH_SHIFT);
adma2EntryAddress[i].attribute |= (dataBytes == 0U) ? 0U : kUSDHC_Adma2DescriptorTypeTransfer;
data += (dmaBufferLen / sizeof(uint32_t));
if (dataBytes != 0U)
{
dataBytes -= dmaBufferLen;
}
}
/* set the end bit */
adma2EntryAddress[i - 1U].attribute |= kUSDHC_Adma2DescriptorEndFlag;
/* add a dummy valid ADMA descriptor for multiple descriptor mode, this is useful when transfer boot data, the ADMA
engine
will not stop at block gap */
if (flags == kUSDHC_AdmaDescriptorMultipleFlag)
{
adma2EntryAddress[miniEntries + startEntries].attribute |= kUSDHC_Adma2DescriptorTypeTransfer;
}
return kStatus_Success;
}
status_t USDHC_SetInternalDmaConfig(USDHC_Type *base,
usdhc_adma_config_t *dmaConfig,
const uint32_t *dataAddr,
bool enAutoCmd23)
{
assert(dmaConfig);
assert(dataAddr);
#if FSL_FEATURE_USDHC_HAS_EXT_DMA
/* disable the external DMA if support */
base->VEND_SPEC &= ~USDHC_VEND_SPEC_EXT_DMA_EN_MASK;
#endif
if (dmaConfig->dmaMode == kUSDHC_DmaModeSimple)
{
/* check DMA data buffer address align or not */
if (((uint32_t)dataAddr % USDHC_ADMA2_ADDRESS_ALIGN) != 0U)
{
return kStatus_USDHC_DMADataAddrNotAlign;
}
/* in simple DMA mode if use auto CMD23, address should load to ADMA addr,
and block count should load to DS_ADDR*/
if (enAutoCmd23)
{
base->ADMA_SYS_ADDR = (uint32_t)dataAddr;
}
else
{
base->DS_ADDR = (uint32_t)dataAddr;
}
}
else
{
/* When use ADMA, disable simple DMA */
base->DS_ADDR = 0U;
base->ADMA_SYS_ADDR = (uint32_t)(dmaConfig->admaTable);
}
/* select DMA mode and config the burst length */
base->PROT_CTRL &= ~(USDHC_PROT_CTRL_DMASEL_MASK | USDHC_PROT_CTRL_BURST_LEN_EN_MASK);
base->PROT_CTRL |= USDHC_PROT_CTRL_DMASEL(dmaConfig->dmaMode) | USDHC_PROT_CTRL_BURST_LEN_EN(dmaConfig->burstLen);
/* enable DMA */
base->MIX_CTRL |= USDHC_MIX_CTRL_DMAEN_MASK;
return kStatus_Success;
}
status_t USDHC_SetAdmaTableConfig(USDHC_Type *base,
usdhc_adma_config_t *dmaConfig,
usdhc_data_t *dataConfig,
uint32_t flags)
{
assert(NULL != dmaConfig);
assert(NULL != dmaConfig->admaTable);
assert(NULL != dataConfig);
status_t error = kStatus_Fail;
const uint32_t *data = (dataConfig->rxData == NULL) ? dataConfig->txData : dataConfig->rxData;
switch (dmaConfig->dmaMode)
{
#if FSL_FEATURE_USDHC_HAS_EXT_DMA
case kUSDHC_ExternalDMA:
/* enable the external DMA */
base->VEND_SPEC |= USDHC_VEND_SPEC_EXT_DMA_EN_MASK;
break;
#endif
case kUSDHC_DmaModeSimple:
break;
case kUSDHC_DmaModeAdma1:
error = USDHC_SetADMA1Descriptor(dmaConfig->admaTable, dmaConfig->admaTableWords, data,
dataConfig->blockSize * dataConfig->blockCount, flags);
break;
case kUSDHC_DmaModeAdma2:
error = USDHC_SetADMA2Descriptor(dmaConfig->admaTable, dmaConfig->admaTableWords, data,
dataConfig->blockSize * dataConfig->blockCount, flags);
break;
default:
return kStatus_USDHC_PrepareAdmaDescriptorFailed;
}
/* for internal dma, internal DMA configurations should not update the configurations when continous transfer the
* boot data, only the DMA descriptor need update */
if ((dmaConfig->dmaMode != kUSDHC_ExternalDMA) && (error == kStatus_Success) &&
(dataConfig->dataType != kUSDHC_TransferDataBootcontinous))
{
error = USDHC_SetInternalDmaConfig(base, dmaConfig, data, dataConfig->enableAutoCommand23);
}
return error;
}
status_t USDHC_TransferBlocking(USDHC_Type *base, usdhc_adma_config_t *dmaConfig, usdhc_transfer_t *transfer)
{
assert(transfer);
status_t error = kStatus_Fail;
usdhc_command_t *command = transfer->command;
usdhc_data_t *data = transfer->data;
bool enDMA = true;
bool executeTuning = ((data == NULL) ? false : data->dataType == kUSDHC_TransferDataTuning);
/*check re-tuning request*/
if ((USDHC_GetInterruptStatusFlags(base) & kUSDHC_ReTuningEventFlag) != 0U)
{
USDHC_ClearInterruptStatusFlags(base, kUSDHC_ReTuningEventFlag);
return kStatus_USDHC_ReTuningRequest;
}
#if defined(FSL_SDK_ENABLE_DRIVER_CACHE_CONTROL) && FSL_SDK_ENABLE_DRIVER_CACHE_CONTROL
if ((data != NULL) && (!executeTuning))
{
if (data->txData != NULL)
{
/* clear the DCACHE */
DCACHE_CleanByRange((uint32_t)data->txData, (data->blockSize) * (data->blockCount));
}
else
{
/* clear the DCACHE */
DCACHE_CleanByRange((uint32_t)data->rxData, (data->blockSize) * (data->blockCount));
}
}
#endif
/* Update ADMA descriptor table according to different DMA mode(no DMA, ADMA1, ADMA2).*/
if ((data != NULL) && (dmaConfig != NULL) && (!executeTuning))
{
error = USDHC_SetAdmaTableConfig(base, dmaConfig, data, (data->dataType & kUSDHC_TransferDataBoot) ?
kUSDHC_AdmaDescriptorMultipleFlag :
kUSDHC_AdmaDescriptorSingleFlag);
}
/* if the DMA desciptor configure fail or not needed , disable it */
if (error != kStatus_Success)
{
enDMA = false;
/* disable DMA, using polling mode in this situation */
USDHC_EnableInternalDMA(base, false);
}
/* config the data transfer parameter */
if (kStatus_Success != USDHC_SetDataTransferConfig(base, data, &(command->flags)))
{
return kStatus_InvalidArgument;
}
/* send command first */
USDHC_SendCommand(base, command);
/* wait command done */
error = USDHC_WaitCommandDone(base, command, (data == NULL) || (data->dataType == kUSDHC_TransferDataNormal));
/* wait transfer data finsih */
if ((data != NULL) && (error == kStatus_Success))
{
return USDHC_TransferDataBlocking(base, data, enDMA);
}
return error;
}
status_t USDHC_TransferNonBlocking(USDHC_Type *base,
usdhc_handle_t *handle,
usdhc_adma_config_t *dmaConfig,
usdhc_transfer_t *transfer)
{
assert(handle);
assert(transfer);
status_t error = kStatus_Fail;
usdhc_command_t *command = transfer->command;
usdhc_data_t *data = transfer->data;
bool executeTuning = ((data == NULL) ? false : data->dataType == kUSDHC_TransferDataTuning);
/*check re-tuning request*/
if ((USDHC_GetInterruptStatusFlags(base) & (kUSDHC_ReTuningEventFlag)) != 0U)
{
USDHC_ClearInterruptStatusFlags(base, kUSDHC_ReTuningEventFlag);
return kStatus_USDHC_ReTuningRequest;
}
#if defined(FSL_SDK_ENABLE_DRIVER_CACHE_CONTROL) && FSL_SDK_ENABLE_DRIVER_CACHE_CONTROL
if ((data != NULL) && (!executeTuning))
{
if (data->txData != NULL)
{
/* clear the DCACHE */
DCACHE_CleanByRange((uint32_t)data->txData, (data->blockSize) * (data->blockCount));
}
else
{
/* clear the DCACHE */
DCACHE_CleanByRange((uint32_t)data->rxData, (data->blockSize) * (data->blockCount));
}
}
#endif
/* Save command and data into handle before transferring. */
handle->command = command;
handle->data = data;
handle->interruptFlags = 0U;
/* transferredWords will only be updated in ISR when transfer way is DATAPORT. */
handle->transferredWords = 0U;
/* Update ADMA descriptor table according to different DMA mode(no DMA, ADMA1, ADMA2).*/
if ((data != NULL) && (dmaConfig != NULL) && (!executeTuning))
{
error = USDHC_SetAdmaTableConfig(base, dmaConfig, data, (data->dataType & kUSDHC_TransferDataBoot) ?
kUSDHC_AdmaDescriptorMultipleFlag :
kUSDHC_AdmaDescriptorSingleFlag);
}
/* if the DMA desciptor configure fail or not needed , disable it */
if (error != kStatus_Success)
{
/* disable DMA, using polling mode in this situation */
USDHC_EnableInternalDMA(base, false);
}
if (kStatus_Success != USDHC_SetDataTransferConfig(base, data, &(command->flags)))
{
return kStatus_InvalidArgument;
}
/* send command first */
USDHC_SendCommand(base, command);
return kStatus_Success;
}
#if defined(FSL_FEATURE_USDHC_HAS_SDR50_MODE) && (FSL_FEATURE_USDHC_HAS_SDR50_MODE)
void USDHC_EnableManualTuning(USDHC_Type *base, bool enable)
{
if (enable)
{
/* make sure std_tun_en bit is clear */
base->TUNING_CTRL &= ~USDHC_TUNING_CTRL_STD_TUNING_EN_MASK;
/* disable auto tuning here */
base->MIX_CTRL &= ~USDHC_MIX_CTRL_AUTO_TUNE_EN_MASK;
/* execute tuning for SDR104 mode */
base->MIX_CTRL |=
USDHC_MIX_CTRL_EXE_TUNE_MASK | USDHC_MIX_CTRL_SMP_CLK_SEL_MASK | USDHC_MIX_CTRL_FBCLK_SEL_MASK;
}
else
{ /* abort the tuning */
base->MIX_CTRL &= ~(USDHC_MIX_CTRL_EXE_TUNE_MASK | USDHC_MIX_CTRL_SMP_CLK_SEL_MASK);
}
}
status_t USDHC_AdjustDelayForManualTuning(USDHC_Type *base, uint32_t delay)
{
uint32_t clkTuneCtrl = 0U;
clkTuneCtrl = base->CLK_TUNE_CTRL_STATUS;
clkTuneCtrl &= ~USDHC_CLK_TUNE_CTRL_STATUS_DLY_CELL_SET_PRE_MASK;
clkTuneCtrl |= USDHC_CLK_TUNE_CTRL_STATUS_DLY_CELL_SET_PRE(delay);
/* load the delay setting */
base->CLK_TUNE_CTRL_STATUS = clkTuneCtrl;
/* check delat setting error */
if (base->CLK_TUNE_CTRL_STATUS &
(USDHC_CLK_TUNE_CTRL_STATUS_PRE_ERR_MASK | USDHC_CLK_TUNE_CTRL_STATUS_NXT_ERR_MASK))
{
return kStatus_Fail;
}
return kStatus_Success;
}
void USDHC_EnableStandardTuning(USDHC_Type *base, uint32_t tuningStartTap, uint32_t step, bool enable)
{
uint32_t tuningCtrl = 0U;
if (enable)
{
/* feedback clock */
base->MIX_CTRL |= USDHC_MIX_CTRL_FBCLK_SEL_MASK;
/* config tuning start and step */
tuningCtrl = base->TUNING_CTRL;
tuningCtrl &= ~(USDHC_TUNING_CTRL_TUNING_START_TAP_MASK | USDHC_TUNING_CTRL_TUNING_STEP_MASK);
tuningCtrl |= (USDHC_TUNING_CTRL_TUNING_START_TAP(tuningStartTap) | USDHC_TUNING_CTRL_TUNING_STEP(step) |
USDHC_TUNING_CTRL_STD_TUNING_EN_MASK);
base->TUNING_CTRL = tuningCtrl;
/* excute tuning */
base->AUTOCMD12_ERR_STATUS |=
(USDHC_AUTOCMD12_ERR_STATUS_EXECUTE_TUNING_MASK | USDHC_AUTOCMD12_ERR_STATUS_SMP_CLK_SEL_MASK);
}
else
{
/* disable the standard tuning */
base->TUNING_CTRL &= ~USDHC_TUNING_CTRL_STD_TUNING_EN_MASK;
/* clear excute tuning */
base->AUTOCMD12_ERR_STATUS &=
~(USDHC_AUTOCMD12_ERR_STATUS_EXECUTE_TUNING_MASK | USDHC_AUTOCMD12_ERR_STATUS_SMP_CLK_SEL_MASK);
}
}
void USDHC_EnableAutoTuningForCmdAndData(USDHC_Type *base)
{
uint32_t busWidth = 0U;
base->VEND_SPEC2 |= USDHC_VEND_SPEC2_TUNING_CMD_EN_MASK;
busWidth = (base->PROT_CTRL & USDHC_PROT_CTRL_DTW_MASK) >> USDHC_PROT_CTRL_DTW_SHIFT;
if (busWidth == kUSDHC_DataBusWidth1Bit)
{
base->VEND_SPEC2 &= ~USDHC_VEND_SPEC2_TUNING_8bit_EN_MASK;
base->VEND_SPEC2 |= USDHC_VEND_SPEC2_TUNING_1bit_EN_MASK;
}
else if (busWidth == kUSDHC_DataBusWidth4Bit)
{
base->VEND_SPEC2 &= ~USDHC_VEND_SPEC2_TUNING_8bit_EN_MASK;
base->VEND_SPEC2 &= ~USDHC_VEND_SPEC2_TUNING_1bit_EN_MASK;
}
else if (busWidth == kUSDHC_DataBusWidth8Bit)
{
base->VEND_SPEC2 |= USDHC_VEND_SPEC2_TUNING_8bit_EN_MASK;
base->VEND_SPEC2 &= ~USDHC_VEND_SPEC2_TUNING_1bit_EN_MASK;
}
else
{
}
}
#endif /* FSL_FEATURE_USDHC_HAS_SDR50_MODE */
static void USDHC_TransferHandleCardDetect(USDHC_Type *base, usdhc_handle_t *handle, uint32_t interruptFlags)
{
if (interruptFlags & kUSDHC_CardInsertionFlag)
{
if (handle->callback.CardInserted)
{
handle->callback.CardInserted(base, handle->userData);
}
}
else
{
if (handle->callback.CardRemoved)
{
handle->callback.CardRemoved(base, handle->userData);
}
}
}
static void USDHC_TransferHandleCommand(USDHC_Type *base, usdhc_handle_t *handle, uint32_t interruptFlags)
{
assert(handle->command);
if ((interruptFlags & kUSDHC_CommandErrorFlag) && (!(handle->data)))
{
if (handle->callback.TransferComplete)
{
handle->callback.TransferComplete(base, handle, kStatus_USDHC_SendCommandFailed, handle->userData);
}
}
else
{
/* Receive response */
if (kStatus_Success != USDHC_ReceiveCommandResponse(base, handle->command))
{
if (handle->callback.TransferComplete)
{
handle->callback.TransferComplete(base, handle, kStatus_USDHC_SendCommandFailed, handle->userData);
}
}
else if ((!(handle->data)) && (handle->callback.TransferComplete))
{
if (handle->callback.TransferComplete)
{
handle->callback.TransferComplete(base, handle, kStatus_Success, handle->userData);
}
}
else
{
}
}
}
static void USDHC_TransferHandleData(USDHC_Type *base, usdhc_handle_t *handle, uint32_t interruptFlags)
{
assert(handle->data);
if (((!(handle->data->enableIgnoreError)) || (interruptFlags & kUSDHC_DataTimeoutFlag)) &&
(interruptFlags & (kUSDHC_DataErrorFlag | kUSDHC_DmaErrorFlag)))
{
if (handle->callback.TransferComplete)
{
handle->callback.TransferComplete(base, handle, kStatus_USDHC_TransferDataFailed, handle->userData);
}
}
else
{
if (interruptFlags & kUSDHC_BufferReadReadyFlag)
{
/* std tuning process only need to wait BRR */
if (handle->data->dataType == kUSDHC_TransferDataTuning)
{
if (handle->callback.TransferComplete)
{
handle->callback.TransferComplete(base, handle, kStatus_Success, handle->userData);
}
}
else
{
handle->transferredWords = USDHC_ReadDataPort(base, handle->data, handle->transferredWords);
}
}
else if (interruptFlags & kUSDHC_BufferWriteReadyFlag)
{
handle->transferredWords = USDHC_WriteDataPort(base, handle->data, handle->transferredWords);
}
else if (interruptFlags & kUSDHC_DataCompleteFlag)
{
if (handle->callback.TransferComplete)
{
handle->callback.TransferComplete(base, handle, kStatus_Success, handle->userData);
}
}
else
{
/* Do nothing when DMA complete flag is set. Wait until data complete flag is set. */
}
#if defined(FSL_SDK_ENABLE_DRIVER_CACHE_CONTROL) && FSL_SDK_ENABLE_DRIVER_CACHE_CONTROL
/* invalidate cache for read */
if ((handle->data != NULL) && (handle->data->rxData != NULL) &&
(handle->data->dataType != kUSDHC_TransferDataTuning))
{
/* invalidate the DCACHE */
DCACHE_InvalidateByRange((uint32_t)handle->data->rxData,
(handle->data->blockSize) * (handle->data->blockCount));
}
#endif
}
}
static void USDHC_TransferHandleSdioInterrupt(USDHC_Type *base, usdhc_handle_t *handle)
{
if (handle->callback.SdioInterrupt)
{
handle->callback.SdioInterrupt(base, handle->userData);
}
}
static void USDHC_TransferHandleReTuning(USDHC_Type *base, usdhc_handle_t *handle, uint32_t interruptFlags)
{
assert(handle->callback.ReTuning);
/* retuning request */
if ((interruptFlags & kUSDHC_TuningErrorFlag) == kUSDHC_TuningErrorFlag)
{
handle->callback.ReTuning(base, handle->userData); /* retuning fail */
}
}
static void USDHC_TransferHandleBlockGap(USDHC_Type *base, usdhc_handle_t *handle)
{
if (handle->callback.BlockGap)
{
handle->callback.BlockGap(base, handle->userData);
}
}
void USDHC_TransferCreateHandle(USDHC_Type *base,
usdhc_handle_t *handle,
const usdhc_transfer_callback_t *callback,
void *userData)
{
assert(handle);
assert(callback);
/* Zero the handle. */
memset(handle, 0, sizeof(*handle));
/* Set the callback. */
handle->callback.CardInserted = callback->CardInserted;
handle->callback.CardRemoved = callback->CardRemoved;
handle->callback.SdioInterrupt = callback->SdioInterrupt;
handle->callback.BlockGap = callback->BlockGap;
handle->callback.TransferComplete = callback->TransferComplete;
handle->callback.ReTuning = callback->ReTuning;
handle->userData = userData;
/* Save the handle in global variables to support the double weak mechanism. */
s_usdhcHandle[USDHC_GetInstance(base)] = handle;
/* Enable interrupt in NVIC. */
USDHC_SetTransferInterrupt(base, true);
/* disable the tuning pass interrupt */
USDHC_DisableInterruptSignal(base, kUSDHC_TuningPassFlag | kUSDHC_ReTuningEventFlag);
/* save IRQ handler */
s_usdhcIsr = USDHC_TransferHandleIRQ;
EnableIRQ(s_usdhcIRQ[USDHC_GetInstance(base)]);
}
void USDHC_TransferHandleIRQ(USDHC_Type *base, usdhc_handle_t *handle)
{
assert(handle);
uint32_t interruptFlags;
interruptFlags = USDHC_GetInterruptStatusFlags(base);
handle->interruptFlags = interruptFlags;
if (interruptFlags & kUSDHC_CardDetectFlag)
{
USDHC_TransferHandleCardDetect(base, handle, (interruptFlags & kUSDHC_CardDetectFlag));
}
if (interruptFlags & kUSDHC_CommandFlag)
{
USDHC_TransferHandleCommand(base, handle, (interruptFlags & kUSDHC_CommandFlag));
}
if (interruptFlags & kUSDHC_DataFlag)
{
USDHC_TransferHandleData(base, handle, (interruptFlags & kUSDHC_DataFlag));
}
if (interruptFlags & kUSDHC_CardInterruptFlag)
{
USDHC_TransferHandleSdioInterrupt(base, handle);
}
if (interruptFlags & kUSDHC_BlockGapEventFlag)
{
USDHC_TransferHandleBlockGap(base, handle);
}
if (interruptFlags & kUSDHC_SDR104TuningFlag)
{
USDHC_TransferHandleReTuning(base, handle, (interruptFlags & kUSDHC_SDR104TuningFlag));
}
USDHC_ClearInterruptStatusFlags(base, interruptFlags);
}
#ifdef USDHC0
void USDHC0_DriverIRQHandler(void)
{
s_usdhcIsr(s_usdhcBase[0U], s_usdhcHandle[0U]);
/* Add for ARM errata 838869, affects Cortex-M4, Cortex-M4F Store immediate overlapping
exception return operation might vector to incorrect interrupt */
#if defined __CORTEX_M && (__CORTEX_M == 4U)
__DSB();
#endif
}
#endif
#ifdef USDHC1
void USDHC1_DriverIRQHandler(void)
{
s_usdhcIsr(s_usdhcBase[1U], s_usdhcHandle[1U]);
/* Add for ARM errata 838869, affects Cortex-M4, Cortex-M4F Store immediate overlapping
exception return operation might vector to incorrect interrupt */
#if defined __CORTEX_M && (__CORTEX_M == 4U)
__DSB();
#endif
}
#endif
#ifdef USDHC2
void USDHC2_DriverIRQHandler(void)
{
s_usdhcIsr(s_usdhcBase[2U], s_usdhcHandle[2U]);
/* Add for ARM errata 838869, affects Cortex-M4, Cortex-M4F Store immediate overlapping
exception return operation might vector to incorrect interrupt */
#if defined __CORTEX_M && (__CORTEX_M == 4U)
__DSB();
#endif
}
#endif