rtt-f030/bsp/lm3s/luminaryif.c

490 lines
13 KiB
C
Raw Normal View History

//*****************************************************************************
//
// luminaryif.c - Ethernet Interface File for lwIP TCP/IP Stack
//
//*****************************************************************************
#include <inc/hw_memmap.h>
#include <inc/hw_types.h>
#include <inc/hw_ints.h>
#include <inc/hw_ethernet.h>
#include <driverlib/ethernet.h>
#include <driverlib/interrupt.h>
#include <driverlib/sysctl.h>
#include <driverlib/gpio.h>
#include <driverlib/flash.h>
#include <netif/ethernetif.h>
#include "lwipopts.h"
#include "luminaryif.h"
#define MAX_ADDR_LEN 6
struct net_device
{
/* inherit from ethernet device */
struct eth_device parent;
/* interface address info. */
rt_uint8_t dev_addr[MAX_ADDR_LEN]; /* hw address */
};
static struct net_device luminaryif_dev_entry;
static struct net_device *luminaryif_dev =&luminaryif_dev_entry;
static struct rt_semaphore tx_sem;
//*****************************************************************************
//
// Sanity Check: This module will NOT work if the following defines
// are incorrect.
//
//*****************************************************************************
#if (PBUF_LINK_HLEN != 16)
#error "Incorrect PBUF_LINK_HLEN specified!"
#endif
#if (ETH_PAD_SIZE != 2)
#error "Incorrect ETH_PAD_SIZE specified!"
#endif
#if (PBUF_POOL_BUFSIZE % 4)
#error "PBUF_POOL_BUFSIZE must be modulo 4!"
#endif
/* RT-Thread Device Interface */
/* initialize the interface */
//*****************************************************************************
//
// Low-Level initialization function for the Ethernet Controller.
//
//*****************************************************************************
rt_err_t luminaryif_init(rt_device_t dev)
{
unsigned long ulTemp;
//
// Disable all Ethernet Interrupts.
//
EthernetIntDisable(ETH_BASE, (ETH_INT_PHY | ETH_INT_MDIO | ETH_INT_RXER |
ETH_INT_RXOF | ETH_INT_TX | ETH_INT_TXER |
ETH_INT_RX));
ulTemp = EthernetIntStatus(ETH_BASE, false);
EthernetIntClear(ETH_BASE, ulTemp);
//
// Initialize the Ethernet Controller.
//
EthernetInitExpClk(ETH_BASE, SysCtlClockGet());
//
// Configure the Ethernet Controller for normal operation.
// - Enable TX Duplex Mode
// - Enable TX Padding
// - Enable TX CRC Generation
//
EthernetConfigSet(ETH_BASE, (ETH_CFG_TX_DPLXEN |
ETH_CFG_TX_CRCEN | ETH_CFG_TX_PADEN));
//
// Enable the Ethernet Controller transmitter and receiver.
//
EthernetEnable(ETH_BASE);
//
// Enable the Ethernet Interrupt handler.
//
IntEnable(INT_ETH);
//
// Enable Ethernet TX and RX Packet Interrupts.
//
EthernetIntEnable(ETH_BASE, ETH_INT_RX | ETH_INT_TX);
return RT_EOK;
}
void luminaryif_isr(void)
{
unsigned long ulTemp;
//
// Read and Clear the interrupt.
//
ulTemp = EthernetIntStatus(ETH_BASE, false);
EthernetIntClear(ETH_BASE, ulTemp);
//
// Check to see if an RX Interrupt has occured.
//
if(ulTemp & ETH_INT_RX)
{
//
// Indicate that a packet has been received.
//
rt_err_t result;
/* a frame has been received */
result = eth_device_ready((struct eth_device*)&(luminaryif_dev->parent));
if(result != RT_EOK) rt_set_errno(-RT_ERROR);
//
// Disable Ethernet RX Interrupt.
//
EthernetIntDisable(ETH_BASE, ETH_INT_RX);
}
if(ulTemp & ETH_INT_TX)
{
/* A frame has been transmitted. */
rt_sem_release(&tx_sem);
}
}
/* control the interface */
rt_err_t luminaryif_control(rt_device_t dev, rt_uint8_t cmd, void *args)
{
switch(cmd)
{
case NIOCTL_GADDR:
/* get mac address */
if(args) rt_memcpy(args, luminaryif_dev_entry.dev_addr, 6);
else return -RT_ERROR;
break;
default :
break;
}
return RT_EOK;
}
/* Open the ethernet interface */
rt_err_t luminaryif_open(rt_device_t dev, rt_uint16_t oflag)
{
return RT_EOK;
}
/* Close the interface */
rt_err_t luminaryif_close(rt_device_t dev)
{
return RT_EOK;
}
/* Read */
rt_size_t luminaryif_read(rt_device_t dev, rt_off_t pos, void* buffer, rt_size_t size)
{
rt_set_errno(-RT_ENOSYS);
return 0;
}
/* Write */
rt_size_t luminaryif_write(rt_device_t dev, rt_off_t pos, const void* buffer, rt_size_t size)
{
rt_set_errno(-RT_ENOSYS);
return 0;
}
//****************************************************************************
//
// Low-Level transmit routine. Should do the actual transmission of the
// packet. The packet is contained in the pbuf that is passed to the function.
// This pbuf might be chained.
//
//****************************************************************************
rt_err_t luminaryif_tx(rt_device_t dev, struct pbuf *p)
{
int iBuf;
unsigned char *pucBuf;
unsigned long *pulBuf;
struct pbuf *q;
int iGather;
unsigned long ulGather;
unsigned char *pucGather;
unsigned long ulTemp;
/* lock tx operation */
rt_sem_take(&tx_sem, RT_WAITING_FOREVER);
//
// Wait for space available in the TX FIFO.
//
while(!EthernetSpaceAvail(ETH_BASE))
{
}
//
// Fill in the first two bytes of the payload data (configured as padding
// with ETH_PAD_SIZE = 2) with the total length of the payload data
// (minus the Ethernet MAC layer header).
//
*((unsigned short *)(p->payload)) = p->tot_len - 16;
//
// Initialize the gather register.
//
iGather = 0;
pucGather = (unsigned char *)&ulGather;
ulGather = 0;
//
// Copy data from the pbuf(s) into the TX Fifo.
//
for(q = p; q != NULL; q = q->next)
{
//
// Intialize a char pointer and index to the pbuf payload data.
//
pucBuf = (unsigned char *)q->payload;
iBuf = 0;
//
// If the gather buffer has leftover data from a previous pbuf
// in the chain, fill it up and write it to the Tx FIFO.
//
while((iBuf < q->len) && (iGather != 0))
{
//
// Copy a byte from the pbuf into the gather buffer.
//
pucGather[iGather] = pucBuf[iBuf++];
//
// Increment the gather buffer index modulo 4.
//
iGather = ((iGather + 1) % 4);
}
//
// If the gather index is 0 and the pbuf index is non-zero,
// we have a gather buffer to write into the Tx FIFO.
//
if((iGather == 0) && (iBuf != 0))
{
HWREG(ETH_BASE + MAC_O_DATA) = ulGather;
ulGather = 0;
}
//
// Copy words of pbuf data into the Tx FIFO, but don't go past
// the end of the pbuf.
//
if((iBuf % 4) != 0)
{
while((iBuf + 4) <= q->len)
{
ulTemp = (pucBuf[iBuf++] << 0);
ulTemp |= (pucBuf[iBuf++] << 8);
ulTemp |= (pucBuf[iBuf++] << 16);
ulTemp |= (pucBuf[iBuf++] << 24);
HWREG(ETH_BASE + MAC_O_DATA) = ulTemp;
}
}
else
{
//
// Initialze a long pointer into the pbuf for 32-bit access.
//
pulBuf = (unsigned long *)&pucBuf[iBuf];
while((iBuf + 4) <= q->len)
{
HWREG(ETH_BASE + MAC_O_DATA) = *pulBuf++;
iBuf += 4;
}
}
//
// Check if leftover data in the pbuf and save it in the gather
// buffer for the next time.
//
while(iBuf < q->len)
{
//
// Copy a byte from the pbuf into the gather buffer.
//
pucGather[iGather] = pucBuf[iBuf++];
//
// Increment the gather buffer index modulo 4.
//
iGather = ((iGather + 1) % 4);
}
}
//
// Send any leftover data to the FIFO.
//
HWREG(ETH_BASE + MAC_O_DATA) = ulGather;
//
// Wakeup the transmitter.
//
HWREG(ETH_BASE + MAC_O_TR) = MAC_TR_NEWTX;
#if LINK_STATS
lwip_stats.link.xmit++;
#endif
return(ERR_OK);
}
//*****************************************************************************
//
// Low-Level receive routine. Should allocate a pbuf and transfer the bytes
// of the incoming packet from the interface into the pbuf.
//
//*****************************************************************************
struct pbuf * luminaryif_rx(rt_device_t dev)
{
struct pbuf *p, *q;
u16_t len;
unsigned long ulTemp;
int i;
unsigned long *ptr;
if(!EthernetPacketAvail(ETH_BASE))
{
//
// Enable Ethernet RX Interrupt.
//
EthernetIntEnable(ETH_BASE, ETH_INT_RX);
return(NULL);
}
//
// Obtain the size of the packet and put it into the "len" variable.
// Note: The length returned in the FIFO length position includes the
// two bytes for the length + the 4 bytes for the FCS.
//
ulTemp = HWREG(ETH_BASE + MAC_O_DATA);
len = ulTemp & 0xFFFF;
//
// We allocate a pbuf chain of pbufs from the pool.
//
p = pbuf_alloc(PBUF_LINK, len, PBUF_RAM);
if(p != NULL)
{
//
// Place the first word into the first pbuf location.
//
*(unsigned long *)p->payload = ulTemp;
p->payload = (char *)(p->payload) + 4;
p->len -= 4;
//
// Process all but the last buffer in the pbuf chain.
//
q = p;
while(q != NULL)
{
//
// Setup a byte pointer into the payload section of the pbuf.
//
ptr = q->payload;
//
// Read data from FIFO into the current pbuf
// (assume pbuf length is modulo 4)
//
for(i = 0; i < q->len; i += 4)
{
*ptr++ = HWREG(ETH_BASE + MAC_O_DATA);
}
//
// Link in the next pbuf in the chain.
//
q = q->next;
}
//
// Restore the first pbuf parameters to their original values.
//
p->payload = (char *)(p->payload) - 4;
p->len += 4;
#if LINK_STATS
lwip_stats.link.recv++;
#endif
}
else
{
//
// Just read all of the remaining data from the FIFO and dump it.
//
for(i = 4; i < len; i+=4)
{
ulTemp = HWREG(ETH_BASE + MAC_O_DATA);
}
#if LINK_STATS
lwip_stats.link.memerr++;
lwip_stats.link.drop++;
#endif
}
return(p);
}
int rt_hw_luminaryif_init(void)
{
rt_err_t result;
unsigned long ulUser0, ulUser1;
/* Enable and Reset the Ethernet Controller. */
SysCtlPeripheralEnable(SYSCTL_PERIPH_ETH);
SysCtlPeripheralReset(SYSCTL_PERIPH_ETH);
/*
Enable Port F for Ethernet LEDs.
LED0 Bit 3 Output
LED1 Bit 2 Output
*/
SysCtlPeripheralEnable(SYSCTL_PERIPH_GPIOF);
GPIODirModeSet(GPIO_PORTF_BASE, GPIO_PIN_2 | GPIO_PIN_3, GPIO_DIR_MODE_HW);
GPIOPadConfigSet(GPIO_PORTF_BASE, GPIO_PIN_2 | GPIO_PIN_3,
GPIO_STRENGTH_2MA, GPIO_PIN_TYPE_STD);
FlashUserSet(0x12345678, 0x12345678);
/* Configure the hardware MAC address */
FlashUserGet(&ulUser0, &ulUser1);
if((ulUser0 == 0xffffffff) || (ulUser1 == 0xffffffff))
{
rt_kprintf("Fatal error in geting MAC address\n");
}
/* init rt-thread device interface */
luminaryif_dev_entry.parent.parent.init = luminaryif_init;
luminaryif_dev_entry.parent.parent.open = luminaryif_open;
luminaryif_dev_entry.parent.parent.close = luminaryif_close;
luminaryif_dev_entry.parent.parent.read = luminaryif_read;
luminaryif_dev_entry.parent.parent.write = luminaryif_write;
luminaryif_dev_entry.parent.parent.control = luminaryif_control;
luminaryif_dev_entry.parent.eth_rx = luminaryif_rx;
luminaryif_dev_entry.parent.eth_tx = luminaryif_tx;
/*
Convert the 24/24 split MAC address from NV ram into a 32/16 split MAC
address needed to program the hardware registers, then program the MAC
address into the Ethernet Controller registers.
*/
luminaryif_dev_entry.dev_addr[0] = ((ulUser0 >> 0) & 0xff);
luminaryif_dev_entry.dev_addr[1] = ((ulUser0 >> 8) & 0xff);
luminaryif_dev_entry.dev_addr[2] = ((ulUser0 >> 16) & 0xff);
luminaryif_dev_entry.dev_addr[3] = ((ulUser1 >> 0) & 0xff);
luminaryif_dev_entry.dev_addr[4] = ((ulUser1 >> 8) & 0xff);
luminaryif_dev_entry.dev_addr[5] = ((ulUser1 >> 16) & 0xff);
/* Program the hardware with it's MAC address (for filtering). */
EthernetMACAddrSet(ETH_BASE, luminaryif_dev_entry.dev_addr);
rt_sem_init(&tx_sem, "emac", 1, RT_IPC_FLAG_FIFO);
result = eth_device_init(&(luminaryif_dev->parent), "E0");
return result;
}