rtt-f030/libcpu/arm/s3c24x0/start_rvds.s

473 lines
16 KiB
ArmAsm
Raw Normal View History

;/*****************************************************************************/
;/* S3C2440.S: Startup file for Samsung S3C440 */
;/*****************************************************************************/
;/* <<< Use Configuration Wizard in Context Menu >>> */
;/*****************************************************************************/
;/* This file is part of the uVision/ARM development tools. */
;/* Copyright (c) 2005-2008 Keil Software. All rights reserved. */
;/* This software may only be used under the terms of a valid, current, */
;/* end user licence from KEIL for a compatible version of KEIL software */
;/* development tools. Nothing else gives you the right to use this software. */
;/*****************************************************************************/
;/*
; * The S3C2440.S code is executed after CPU Reset. This file may be
; * translated with the following SET symbols. In uVision these SET
; * symbols are entered under Options - ASM - Define.
; *
; * NO_CLOCK_SETUP: when set the startup code will not initialize Clock
; * (used mostly when clock is aLReady initialized from script .ini
; * file).
; *
; * NO_MC_SETUP: when set the startup code will not initialize Memory
; * Controller (used mostly when clock is aLReady initialized from script
; * .ini file).
; *
; * NO_GP_SETUP: when set the startup code will not initialize General Ports
; * (used mostly when clock is aLReady initialized from script .ini
; * file).
; *
; * RAM_INTVEC: when set the startup code copies exception vectors
; * from execution address to on-chip RAM.
; */
;/*
; * File : start_rvds.s
; * This file is part of RT-Thread RTOS
; * COPYRIGHT (C) 2006, RT-Thread Development Team
; *
; * The license and diSTRibution terms for this file may be
; * found in the file LICENSE in this diSTRibution or at
; * http://openlab.rt-thread.com/license/LICENSE
; *
; * Change Logs:
; * Date Author Notes
; * 2010-01-12 Gary Lee Change the STRucture of the code,
; the configuration file's name is config.inc
; * 2010-01-22 Gary Lee Add interrupt config for startup 2440
; * 2010-01-23 Gary Lee Add copy myself for startup from nand
; */
; Area Definition and Entry Point
; Startup Code must be linked first at Address at which it expects to run.
; Exception Vectors
; Mapped to Address 0.
; Absolute addressing mode must be used.
; Dummy Handlers are implemented as infinite loops which can be modified.
GET config.inc
PRESERVE8
AREA RESET, CODE, READONLY
ARM
EXPORT Entry_Point
Entry_Point
Vectors LDR PC, Reset_Addr
LDR PC, Undef_Addr
LDR PC, SWI_Addr
LDR PC, PAbt_Addr
LDR PC, DAbt_Addr
NOP
LDR PC, IRQ_Addr
LDR PC, FIQ_Addr
Reset_Addr DCD Reset_Handler
Undef_Addr DCD Undef_Handler
SWI_Addr DCD SWI_Handler
PAbt_Addr DCD PAbt_Handler
DAbt_Addr DCD DAbt_Handler
DCD 0 ; Reserved Address
IRQ_Addr DCD IRQ_Handler
FIQ_Addr DCD FIQ_Handler
Undef_Handler B Undef_Handler
SWI_Handler B SWI_Handler
PAbt_Handler B PAbt_Handler
DAbt_Handler B DAbt_Handler
FIQ_Handler B FIQ_Handler
;=========================================================================
; Reset Handler
EXPORT Reset_Handler
Reset_Handler
BL WatchDog_Config ; shutdown watchdog
BL Interrupt_Config ; shutdown interrupt
BL SysClock_Config ; setup system clock, default value is 400MHz
BL SDRAM_Config ; setup sdram clock, default value is 100MHz
;BL Copymyself_Config ; copy myself from 0x1000 with size of 1MB to sdram address of 0x30000000
BL GPIO_Config ; setup gpio
BL RAM_INTVEC_Config ; install interrupt handler to sdram
BL Stack_Config ; setup stack for every mode
; a technology about trampoline
LDR R1, =ON_THE_RAM
ADD PC, R1, #0
NOP
NOP
1
B %B1
ON_THE_RAM
; setup by APCS
MOV FP, #0 ; no previous frame, so fp=0
MOV a2, #0 ; set argv to NULL
IMPORT __main
BL __main ; call main
MOV R0, #FLASH_BASE_ADDR
MOV PC, R0 ; otherwise, reboot
;=========================================================================
IMPORT rt_interrupt_enter
IMPORT rt_interrupt_leave
IMPORT rt_thread_switch_interrput_flag
IMPORT rt_interrupt_from_thread
IMPORT rt_interrupt_to_thread
IMPORT rt_hw_trap_irq
IMPORT nand_read_ll
IRQ_Handler PROC
EXPORT IRQ_Handler
STMFD SP!, {R0-R12,LR}
BL rt_interrupt_enter
BL rt_hw_trap_irq
BL rt_interrupt_leave
LDR R0, =rt_thread_switch_interrput_flag
LDR R1, [R0]
CMP R1, #1
BEQ rt_hw_context_switch_interrupt_do
LDMFD SP!, {R0-R12,LR}
SUBS PC, LR, #4
ENDP
rt_hw_context_switch_interrupt_do PROC
EXPORT rt_hw_context_switch_interrupt_do
MOV R1, #0 ; clear flag
STR R1, [R0]
LDMFD SP!, {R0-R12,LR}; reload saved registers
STMFD SP!, {R0-R3} ; save R0-R3
MOV R1, SP
ADD SP, SP, #16 ; restore SP
SUB R2, LR, #4 ; save old task's PC to R2
MRS R3, SPSR ; get cpsr of interrupt thread
; switch to SVC mode and no interrupt
MSR cpsr_c, #I_Bit|F_Bit|Mode_SVC
STMFD SP!, {R2} ; push old task's PC
STMFD SP!, {r4-R12,LR}; push old task's LR,R12-r4
MOV r4, R1 ; SPecial optimised code below
MOV r5, R3
LDMFD r4!, {R0-R3}
STMFD SP!, {R0-R3} ; push old task's R3-R0
STMFD SP!, {r5} ; push old task's cpsr
MRS r4, SPSR
STMFD SP!, {r4} ; push old task's SPsr
LDR r4, =rt_interrupt_from_thread
LDR r5, [r4]
STR SP, [r5] ; store SP in preempted tasks's TCB
LDR r6, =rt_interrupt_to_thread
LDR r6, [r6]
LDR SP, [r6] ; get new task's stack pointer
LDMFD SP!, {r4} ; pop new task's SPsr
MSR SPSR_cxsf, r4
LDMFD SP!, {r4} ; pop new task's psr
MSR cpsr_cxsf, r4
LDMFD SP!, {R0-R12,LR} ; pop new task's R0-R12,LR & PC
LDMFD SP!, {PC}
ENDP
; Use microlib
IF :DEF:__MICROLIB
EXPORT __heap_base
EXPORT __heap_limit
ELSE
; User Initial Stack & Heap
AREA |.text|, CODE, READONLY
IMPORT __use_two_region_memory
EXPORT __user_initial_stackheap
__user_initial_stackheap
LDR R0, = Heap_Mem
LDR R1, =(Stack_Mem + USR_Stack_Size)
LDR R2, = (Heap_Mem + Heap_Size)
LDR R3, = Stack_Mem
BX LR
ENDIF
;=========================================================================
; Subroutines
WatchDog_Config PROC
IF WT_SETUP != 0
LDR R0, =WT_BASE
LDR R1, =WTCON_Val
LDR R2, =WTDAT_Val
STR R2, [R0, #WTCNT_OFS]
STR R2, [R0, #WTDAT_OFS]
STR R1, [R0, #WTCON_OFS]
ENDIF
BX LR
ENDP
Interrupt_Config PROC
LDR R0,=INTMSK
LDR R1,=0xffffffff ;/*all interrupt disable<6C>ر<EFBFBD><D8B1><EFBFBD><EFBFBD><EFBFBD><EFBFBD>ж<EFBFBD> */
STR R1,[R0]
LDR R0,=INTSUBMSK
LDR R1,=0x7fff ;/*all sub interrupt disable<6C>ر<EFBFBD><D8B1><EFBFBD><EFBFBD>ж<EFBFBD> */
STR R1,[R0]
BX LR
ENDP
SysClock_Config PROC
IF (:LNOT:(:DEF:NO_CLOCK_SETUP)):LAND:(CLOCK_SETUP != 0)
LDR R0, =CLOCK_BASE
LDR R1, =LOCKTIME_Val
STR R1, [R0, #LOCKTIME_OFS]
MOV R1, #CLKDIVN_Val
STR R1, [R0, #CLKDIVN_OFS]
LDR R1, =CAMDIVN_Val
STR R1, [R0, #CAMDIVN_OFS]
LDR R1, =MPLLCON_Val
STR R1, [R0, #MPLLCON_OFS]
LDR R1, =UPLLCON_Val
STR R1, [R0, #UPLLCON_OFS]
MOV R1, #CLKSLOW_Val
STR R1, [R0, #CLKSLOW_OFS]
LDR R1, =CLKCON_Val
STR R1, [R0, #CLKCON_OFS]
ENDIF
BX LR
ENDP
Copymyself_Config PROC
MOV R1, #NAND_CTL_BASE ; inital NAND<EFBFBD><EFBFBD>ʼ<EFBFBD><EFBFBD>
LDR R2, =((7<<12)|(7<<8)|(7<<4)|(0<<0)) ; initial value
STR R2, [R1, #oNFCONF]
; reset nand flash ; <20><>λNAND
LDR R2, [R1, #oNFCONF]
LDR R2, =((1<<4)|(0<<1)|(1<<0)) ; nFCE active
STR R2, [R1, #oNFCONT]
LDR R2, [R1, #oNFCONT]
LDR R2, =(0x6) ; RnB Clear
STR R2, [R1, #oNFSTAT]
LDR R2, [R1, #oNFSTAT]
MOV R2, #0xff ; reset command
STRB R2, [R1, #oNFCMD]
; <20><>ʱ
MOV R3, #0x0A
1
SUBS R3, R3, #1
BNE %B1
; wait idle state <20><><EFBFBD><EFBFBD>
2
LDR R2, [R1, #oNFSTAT]
TST R2, #0x04
BEQ %B2
LDR R2, [R1, #oNFCONF]
ORR R2, R2, #0x2 ; nFCE inactive
STR R2, [R1, #oNFCONF]
LDR SP, =4096 ; nand_read.c needed
LDR R0, =0x30000000 ; nand_read_ll argument 1 buffer addr
MOV R1, #4096 ; nand_read_ll argument 2 start addr
MOV R2, #0x100000 ; nand_read_ll argument 3 copy size
; 1MB enough for this example
BL nand_read_ll
BX LR
ENDP
SDRAM_Config PROC
IF (:LNOT:(:DEF:NO_MC_SETUP)):LAND:(CLOCK_SETUP != 0)
LDR R0, =MC_BASE
LDR R1, =BWSCON_Val
STR R1, [R0, #BWSCON_OFS]
LDR R1, =BANKCON0_Val
STR R1, [R0, #BANKCON0_OFS]
LDR R1, =BANKCON1_Val
STR R1, [R0, #BANKCON1_OFS]
LDR R1, =BANKCON2_Val
STR R1, [R0, #BANKCON2_OFS]
LDR R1, =BANKCON3_Val
STR R1, [R0, #BANKCON3_OFS]
LDR R1, =BANKCON4_Val
STR R1, [R0, #BANKCON4_OFS]
LDR R1, =BANKCON5_Val
STR R1, [R0, #BANKCON5_OFS]
LDR R1, =BANKCON6_Val
STR R1, [R0, #BANKCON6_OFS]
LDR R1, =BANKCON7_Val
STR R1, [R0, #BANKCON7_OFS]
LDR R1, =REFRESH_Val
STR R1, [R0, #REFRESH_OFS]
MOV R1, #BANKSIZE_Val
STR R1, [R0, #BANKSIZE_OFS]
MOV R1, #MRSRB6_Val
STR R1, [R0, #MRSRB6_OFS]
MOV R1, #MRSRB7_Val
STR R1, [R0, #MRSRB7_OFS]
ENDIF
BX LR
ENDP
GPIO_Config PROC
IF (:LNOT:(:DEF:NO_GP_SETUP)):LAND:(GP_SETUP != 0)
IF GPA_SETUP != 0
LDR R0, =GPA_BASE
LDR R1, =GPACON_Val
STR R1, [R0, #GPCON_OFS]
ENDIF
IF GPB_SETUP != 0
LDR R0, =GPB_BASE
LDR R1, =GPBCON_Val
STR R1, [R0, #GPCON_OFS]
LDR R1, =GPBUP_Val
STR R1, [R0, #GPUP_OFS]
ENDIF
IF GPC_SETUP != 0
LDR R0, =GPC_BASE
LDR R1, =GPCCON_Val
STR R1, [R0, #GPCON_OFS]
LDR R1, =GPCUP_Val
STR R1, [R0, #GPUP_OFS]
ENDIF
IF GPD_SETUP != 0
LDR R0, =GPD_BASE
LDR R1, =GPDCON_Val
STR R1, [R0, #GPCON_OFS]
LDR R1, =GPDUP_Val
STR R1, [R0, #GPUP_OFS]
ENDIF
IF GPE_SETUP != 0
LDR R0, =GPE_BASE
LDR R1, =GPECON_Val
STR R1, [R0, #GPCON_OFS]
LDR R1, =GPEUP_Val
STR R1, [R0, #GPUP_OFS]
ENDIF
IF GPF_SETUP != 0
LDR R0, =GPF_BASE
LDR R1, =GPFCON_Val
STR R1, [R0, #GPCON_OFS]
LDR R1, =GPFUP_Val
STR R1, [R0, #GPUP_OFS]
ENDIF
IF GPG_SETUP != 0
LDR R0, =GPG_BASE
LDR R1, =GPGCON_Val
STR R1, [R0, #GPCON_OFS]
LDR R1, =GPGUP_Val
STR R1, [R0, #GPUP_OFS]
ENDIF
IF GPH_SETUP != 0
LDR R0, =GPH_BASE
LDR R1, =GPHCON_Val
STR R1, [R0, #GPCON_OFS]
LDR R1, =GPHUP_Val
STR R1, [R0, #GPUP_OFS]
ENDIF
IF GPJ_SETUP != 0
LDR R0, =GPJ_BASE
LDR R1, =GPJCON_Val
STR R1, [R0, #GPCON_OFS]
LDR R1, =GPJUP_Val
STR R1, [R0, #GPUP_OFS]
ENDIF
ENDIF
BX LR
ENDP
RAM_INTVEC_Config PROC
IF :DEF:RAM_INTVEC
ADR R8, Vectors ; Source
LDR R9, =IRAM_BASE ; Destination
LDMIA R8!, {R0-R7} ; Load Vectors
STMIA R9!, {R0-R7} ; Store Vectors
LDMIA R8!, {R0-R7} ; Load Handler Addresses
STMIA R9!, {R0-R7} ; Store Handler Addresses
ENDIF
BX LR
ENDP
Stack_Config PROC
LDR R0, =Stack_Top
MSR CPSR_c, #Mode_UND:OR:I_Bit:OR:F_Bit
MOV SP, R0
SUB R0, R0, #UND_Stack_Size
MSR CPSR_c, #Mode_ABT:OR:I_Bit:OR:F_Bit
MOV SP, R0
SUB R0, R0, #ABT_Stack_Size
MSR CPSR_c, #Mode_FIQ:OR:I_Bit:OR:F_Bit
MOV SP, R0
SUB R0, R0, #FIQ_Stack_Size
MSR CPSR_c, #Mode_IRQ:OR:I_Bit:OR:F_Bit
MOV SP, R0
SUB R0, R0, #IRQ_Stack_Size
MSR CPSR_c, #Mode_SVC:OR:I_Bit:OR:F_Bit
MOV SP, R0
SUB R0, R0, #SVC_Stack_Size
; MSR CPSR_c, #Mode_USR
MOV SP, R0
SUB SL, SP, #USR_Stack_Size
BX LR
ENDP
END