508 lines
14 KiB
C
Raw Normal View History

#include <rthw.h>
#include <rtthread.h>
#include "stm32f10x.h"
#include "codec.h"
/*
SCLK PA5 SPI1_SCK
SDIN PA7 SPI1_MOSI
CSB PC5
*/
#define CODEC_CSB_PORT GPIOC
#define CODEC_CSB_PIN GPIO_Pin_5
#define codec_set_csb() do { CODEC_CSB_PORT->BSRR = CODEC_CSB_PIN; } while (0)
#define codec_reset_csb() do { CODEC_CSB_PORT->BRR = CODEC_CSB_PIN; } while (0)
void vol(uint16_t v);
#define DATA_NODE_MAX 5
/* data node for Tx Mode */
struct codec_data_node
{
rt_uint16_t *data_ptr;
rt_size_t data_size;
};
struct codec_device
{
/* inherit from rt_device */
struct rt_device parent;
/* pcm data list */
struct codec_data_node data_list[DATA_NODE_MAX];
rt_uint16_t read_index, put_index;
/* transmitted offset of current data node */
rt_size_t offset;
};
struct codec_device codec;
struct pll_ratio
{
uint8_t n;
uint8_t k1;
uint16_t k2;
uint16_t k3;
};
static void delay_ms(unsigned int dt)
{
volatile unsigned int u;
for (u = 0; u < dt * 30; u++);
}
static void NVIC_Configuration(void)
{
NVIC_InitTypeDef NVIC_InitStructure;
/* SPI2 IRQ Channel configuration */
NVIC_InitStructure.NVIC_IRQChannel = SPI2_IRQn;
NVIC_InitStructure.NVIC_IRQChannelPreemptionPriority = 1;
NVIC_InitStructure.NVIC_IRQChannelSubPriority = 0;
NVIC_InitStructure.NVIC_IRQChannelCmd = ENABLE;
NVIC_Init(&NVIC_InitStructure);
/* DMA1 IRQ Channel configuration */
NVIC_InitStructure.NVIC_IRQChannel = DMA1_Channel5_IRQn;
NVIC_InitStructure.NVIC_IRQChannelPreemptionPriority = 0;
NVIC_InitStructure.NVIC_IRQChannelSubPriority = 0;
NVIC_InitStructure.NVIC_IRQChannelCmd = ENABLE;
NVIC_Init(&NVIC_InitStructure);
}
static void GPIO_Configuration(void)
{
GPIO_InitTypeDef GPIO_InitStructure;
/* Disable the JTAG interface and enable the SWJ interface */
GPIO_PinRemapConfig(GPIO_Remap_SWJ_JTAGDisable, ENABLE);
/* PC5 CODEC CS */
GPIO_InitStructure.GPIO_Pin = CODEC_CSB_PIN;
GPIO_InitStructure.GPIO_Mode = GPIO_Mode_Out_PP;
GPIO_InitStructure.GPIO_Speed = GPIO_Speed_2MHz;
GPIO_Init(CODEC_CSB_PORT, &GPIO_InitStructure);
/* Configure SPI2 pins: CK, WS and SD */
GPIO_InitStructure.GPIO_Pin = GPIO_Pin_12 | GPIO_Pin_13 | GPIO_Pin_15;
GPIO_InitStructure.GPIO_Speed = GPIO_Speed_10MHz;
GPIO_InitStructure.GPIO_Mode = GPIO_Mode_AF_PP;
GPIO_Init(GPIOB, &GPIO_InitStructure);
#ifdef CODEC_USE_MCO
/* MCO configure */
GPIO_InitStructure.GPIO_Pin = GPIO_Pin_8;
GPIO_InitStructure.GPIO_Mode = GPIO_Mode_AF_PP;
GPIO_InitStructure.GPIO_Speed = GPIO_Speed_50MHz;
GPIO_Init(GPIOA,&GPIO_InitStructure);
RCC_MCOConfig(RCC_MCO_HSE);
#endif
}
static void DMA_Configuration(rt_uint32_t addr, rt_size_t size)
{
DMA_InitTypeDef DMA_InitStructure;
/* DMA1 Channel2 configuration ----------------------------------------------*/
DMA_Cmd(DMA1_Channel5, DISABLE);
DMA_InitStructure.DMA_PeripheralBaseAddr = (u32)(&(SPI2->DR));
DMA_InitStructure.DMA_MemoryBaseAddr = (u32) addr;
DMA_InitStructure.DMA_DIR = DMA_DIR_PeripheralDST;
DMA_InitStructure.DMA_BufferSize = size;
DMA_InitStructure.DMA_PeripheralInc = DMA_PeripheralInc_Disable;
DMA_InitStructure.DMA_MemoryInc = DMA_MemoryInc_Enable;
DMA_InitStructure.DMA_PeripheralDataSize = DMA_PeripheralDataSize_HalfWord;
DMA_InitStructure.DMA_MemoryDataSize = DMA_MemoryDataSize_HalfWord;
DMA_InitStructure.DMA_Priority = DMA_Priority_High;
DMA_InitStructure.DMA_Mode = DMA_Mode_Normal;
DMA_InitStructure.DMA_M2M = DMA_M2M_Disable;
DMA_Init(DMA1_Channel5, &DMA_InitStructure);
/* Enable SPI2 DMA Tx request */
SPI_I2S_DMACmd(SPI2, SPI_I2S_DMAReq_Tx, ENABLE);
DMA_ITConfig(DMA1_Channel5, DMA_IT_TC, ENABLE);
DMA_Cmd(DMA1_Channel5, ENABLE);
}
static void I2S_Configuration(void)
{
I2S_InitTypeDef I2S_InitStructure;
/* I2S peripheral configuration */
I2S_InitStructure.I2S_Standard = I2S_Standard_Phillips;
I2S_InitStructure.I2S_DataFormat = I2S_DataFormat_16b;
I2S_InitStructure.I2S_MCLKOutput = I2S_MCLKOutput_Disable;
I2S_InitStructure.I2S_AudioFreq = I2S_AudioFreq_44k;
I2S_InitStructure.I2S_CPOL = I2S_CPOL_High; // I2S_CPOL_Low
/* I2S2 Master Transmitter to I2S3 Slave Receiver communication -----------*/
/* I2S2 configuration */
I2S_InitStructure.I2S_Mode = I2S_Mode_MasterTx; //I2S_Mode_MasterTx I2S_Mode_SlaveTx
I2S_Init(SPI2, &I2S_InitStructure);
}
uint8_t SPI_WriteByte(unsigned char data)
{
//Wait until the transmit buffer is empty
while (SPI_I2S_GetFlagStatus(SPI1, SPI_I2S_FLAG_TXE) == RESET);
// Send the byte
SPI_I2S_SendData(SPI1, data);
//Wait until a data is received
while (SPI_I2S_GetFlagStatus(SPI1, SPI_I2S_FLAG_RXNE) == RESET);
// Get the received data
data = SPI_I2S_ReceiveData(SPI1);
// Return the shifted data
return data;
}
static void codec_send(rt_uint16_t s_data)
{
codec_reset_csb();
SPI_WriteByte((s_data >> 8) & 0xFF);
SPI_WriteByte(s_data & 0xFF);
codec_set_csb();
}
static rt_err_t codec_init(rt_device_t dev)
{
codec_send(REG_SOFTWARE_RESET);
// 1.5x boost power up sequence.
// Mute all outputs.
codec_send(REG_LOUT1_VOL | LOUT1MUTE);
codec_send(REG_ROUT1_VOL | ROUT1MUTE);
codec_send(REG_LOUT2_VOL | LOUT2MUTE);
codec_send(REG_ROUT2_VOL | ROUT2MUTE);
// Enable unused output chosen from L/ROUT2, OUT3 or OUT4.
codec_send(REG_POWER_MANAGEMENT3 | OUT4EN);
// Set BUFDCOPEN=1 and BUFIOEN=1 in register R1
codec_send(REG_POWER_MANAGEMENT1 | BUFDCOPEN | BUFIOEN);
// Set SPKBOOST=1 in register R49.
codec_send(REG_OUTPUT | SPKBOOST);
// Set VMIDSEL[1:0] to required value in register R1.
codec_send(REG_POWER_MANAGEMENT1 | BUFDCOPEN | BUFIOEN | VMIDSEL_75K);
// Wait for VMID supply to settle.
delay_ms(750);
// Set L/RMIXEN=1 and DACENL/R=1 in register R3.
codec_send(REG_POWER_MANAGEMENT3 | LMIXEN | RMIXEN | DACENL | DACENR);
// Set BIASEN=1 in register R1.
codec_send(REG_POWER_MANAGEMENT1 | BUFDCOPEN | BUFIOEN | VMIDSEL_75K | BIASEN);
// Set L/ROUT2EN=1 in register R3.
codec_send(REG_POWER_MANAGEMENT3 | LMIXEN | RMIXEN | DACENL | DACENR | LOUT2EN | ROUT2EN);
// Enable other mixers as required.
// Enable other outputs as required.
codec_send(REG_POWER_MANAGEMENT2 | LOUT1EN | ROUT1EN | BOOSTENL | BOOSTENR | INPPGAENL | INPPGAENR);
// Digital inferface setup.
codec_send(REG_AUDIO_INTERFACE | BCP_NORMAL | LRP_NORMAL | WL_16BITS | FMT_I2S);
// PLL setup.
// fs = 44.1KHz / 256fs = 11.2896MHz
// F_PLL = 11.2896MHz * 4 * 2 = 90.3168MHz
// R = 90.3168MHz / 12.288MHz = 7.35
// PLL_N = 7
// PLL_K = 5872026
codec_send(REG_PLL_N | 7);
codec_send(REG_PLL_K1 | 0x16);
codec_send(REG_PLL_K2 | 0xCC);
codec_send(REG_PLL_K3 | 0x19A);
codec_send(REG_POWER_MANAGEMENT1 | BUFDCOPEN | BUFIOEN | VMIDSEL_75K | BIASEN | PLLEN);
codec_send(REG_CLOCK_GEN | CLKSEL_PLL | MCLK_DIV2);
// Enable DAC 128x oversampling.
codec_send(REG_DAC | DACOSR128);
// Set LOUT2/ROUT2 in BTL operation.
codec_send(REG_BEEP | INVROUT2);
// Set output volume to -22dB.
vol(35);
return RT_EOK;
}
// Exported functions
#include <finsh.h>
void vol(uint16_t v)
{
v = (v & VOL_MASK) << VOL_POS;
codec_send(REG_LOUT1_VOL | v);
codec_send(REG_ROUT1_VOL | HPVU | v);
codec_send(REG_LOUT2_VOL | v);
codec_send(REG_ROUT2_VOL | SPKVU | v);
}
void eq1(uint8_t freq, uint8_t gain, uint8_t mode)
{
codec_send(REG_EQ1 | ((freq & EQC_MASK) << EQC_POS) | ((gain & EQG_MASK) << EQG_POS) | (mode ? EQ3DMODE_DAC : EQ3DMODE_ADC));
}
void eq2(uint8_t freq, uint8_t gain, uint8_t bw)
{
codec_send(REG_EQ2 | ((freq & EQC_MASK) << EQC_POS) | ((gain & EQG_MASK) << EQG_POS) | (bw ? EQ2BW_WIDE : EQ2BW_NARROW));
}
void eq3(uint8_t freq, uint8_t gain, uint8_t bw)
{
codec_send(REG_EQ3 | ((freq & EQC_MASK) << EQC_POS) | ((gain & EQG_MASK) << EQG_POS) | (bw ? EQ3BW_WIDE : EQ3BW_NARROW));
}
void eq4(uint8_t freq, uint8_t gain, uint8_t bw)
{
codec_send(REG_EQ4 | ((freq & EQC_MASK) << EQC_POS) | ((gain & EQG_MASK) << EQG_POS) | (bw ? EQ4BW_WIDE : EQ4BW_NARROW));
}
void eq5(uint8_t freq, uint8_t gain)
{
codec_send(REG_EQ2 | ((freq & EQC_MASK) << EQC_POS) | ((gain & EQG_MASK) << EQG_POS));
}
void eq3d(uint8_t depth)
{
codec_send(REG_3D | ((depth & DEPTH3D_MASK) << DEPTH3D_POS));
}
void sample_rate(uint8_t sr)
{
if (sr == 44)
{
codec_send(REG_ADDITIONAL | SR_48KHZ);
codec_send(REG_CLOCK_GEN | CLKSEL_PLL | MCLK_DIV2);
}
else
{
switch (sr)
{
case 8:
codec_send(REG_ADDITIONAL | SR_8KHZ);
break;
case 12:
codec_send(REG_ADDITIONAL | SR_12KHZ);
break;
case 16:
codec_send(REG_ADDITIONAL | SR_16KHZ);
break;
case 24:
codec_send(REG_ADDITIONAL | SR_24KHZ);
break;
case 32:
codec_send(REG_ADDITIONAL | SR_32KHZ);
break;
case 48:
codec_send(REG_ADDITIONAL | SR_48KHZ);
break;
default:
return;
}
codec_send(REG_CLOCK_GEN | CLKSEL_MCLK | MCLK_DIV1);
}
}
FINSH_FUNCTION_EXPORT(vol, Set volume);
FINSH_FUNCTION_EXPORT(eq1, Set EQ1(Cut-off, Gain, Mode));
FINSH_FUNCTION_EXPORT(eq2, Set EQ2(Center, Gain, Bandwidth));
FINSH_FUNCTION_EXPORT(eq3, Set EQ3(Center, Gain, Bandwidth));
FINSH_FUNCTION_EXPORT(eq4, Set EQ4(Center, Gain, Bandwidth));
FINSH_FUNCTION_EXPORT(eq5, Set EQ5(Cut-off, Gain));
FINSH_FUNCTION_EXPORT(eq3d, Set 3D(Depth));
FINSH_FUNCTION_EXPORT(sample_rate, Set sample rate);
static rt_err_t codec_open(rt_device_t dev, rt_uint16_t oflag)
{
/* enable I2S */
I2S_Cmd(SPI2, ENABLE);
return RT_EOK;
}
static rt_err_t codec_close(rt_device_t dev)
{
/* interrupt mode */
if (dev->flag & RT_DEVICE_FLAG_INT_TX)
{
/* Disable the I2S2 */
I2S_Cmd(SPI2, DISABLE);
}
/* remove all data node */
return RT_EOK;
}
static rt_err_t codec_control(rt_device_t dev, rt_uint8_t cmd, void *args)
{
/* rate control */
return RT_EOK;
}
static rt_size_t codec_write(rt_device_t dev, rt_off_t pos,
const void* buffer, rt_size_t size)
{
struct codec_device* device;
struct codec_data_node* node;
rt_uint32_t level;
rt_uint16_t next_index;
device = (struct codec_device*) dev;
RT_ASSERT(device != RT_NULL);
next_index = device->put_index + 1;
if (next_index >= DATA_NODE_MAX)
next_index = 0;
/* check data_list full */
if (next_index == device->read_index)
{
rt_set_errno(-RT_EFULL);
return 0;
}
level = rt_hw_interrupt_disable();
node = &device->data_list[device->put_index];
device->put_index = next_index;
// rt_kprintf("+\n");
/* set node attribute */
node->data_ptr = (rt_uint16_t*) buffer;
node->data_size = size >> 1; /* size is byte unit, convert to half word unit */
next_index = device->read_index + 1;
if (next_index >= DATA_NODE_MAX)
next_index = 0;
/* check data list whether is empty */
if (next_index == device->put_index)
{
if (dev->flag & RT_DEVICE_FLAG_INT_TX)
{
device->offset = 0;
/* enable I2S interrupt */
SPI_I2S_ITConfig(SPI2, SPI_I2S_IT_TXE, ENABLE);
}
else if (dev->flag & RT_DEVICE_FLAG_DMA_TX)
{
DMA_Configuration((rt_uint32_t) node->data_ptr, node->data_size);
}
}
rt_hw_interrupt_enable(level);
return size;
}
rt_err_t codec_hw_init(void)
{
rt_device_t dev;
RCC_APB2PeriphClockCmd(RCC_APB2Periph_GPIOB | RCC_APB2Periph_GPIOC, ENABLE);
RCC_APB1PeriphClockCmd(RCC_APB1Periph_SPI2, ENABLE);
RCC_AHBPeriphClockCmd(RCC_AHBPeriph_DMA1, ENABLE);
NVIC_Configuration();
GPIO_Configuration();
I2S_Configuration();
dev = (rt_device_t) &codec;
dev->type = RT_Device_Class_Unknown;
dev->rx_indicate = RT_NULL;
dev->tx_complete = RT_NULL;
dev->init = codec_init;
dev->open = codec_open;
dev->close = codec_close;
dev->read = RT_NULL;
dev->write = codec_write;
dev->control = codec_control;
dev->private = RT_NULL;
/* set read_index and put index to 0 */
codec.read_index = 0;
codec.put_index = 0;
/* unselect */
codec_set_csb();
/* register the device */
return rt_device_register(&codec.parent, "snd", RT_DEVICE_FLAG_WRONLY | RT_DEVICE_FLAG_DMA_TX);
}
void codec_isr()
{
struct codec_data_node* node;
node = &codec.data_list[codec.read_index]; /* get current data node */
if (SPI_I2S_GetITStatus(SPI2, SPI_I2S_IT_TXE) == SET)
{
SPI_I2S_SendData(SPI2, node->data_ptr[codec.offset++]);
}
if (codec.offset == node->data_size)
{
/* move to next node */
rt_uint16_t next_index;
next_index = codec.read_index + 1;
if (next_index >= DATA_NODE_MAX)
next_index = 0;
/* notify transmitted complete. */
if (codec.parent.tx_complete != RT_NULL)
{
codec.parent.tx_complete(&codec.parent,
codec.data_list[codec.read_index].data_ptr);
rt_kprintf("-\n");
}
codec.offset = 0;
codec.read_index = next_index;
if (next_index == codec.put_index)
{
/* no data on the list, disable I2S interrupt */
SPI_I2S_ITConfig(SPI2, SPI_I2S_IT_TXE, DISABLE);
rt_kprintf("*\n");
}
}
}
void codec_dma_isr()
{
/* switch to next buffer */
rt_uint16_t next_index;
void* data_ptr;
next_index = codec.read_index + 1;
if (next_index >= DATA_NODE_MAX)
next_index = 0;
/* save current data pointer */
data_ptr = codec.data_list[codec.read_index].data_ptr;
codec.read_index = next_index;
if (next_index != codec.put_index)
{
/* enable next dma request */
DMA_Configuration((rt_uint32_t) codec.data_list[codec.read_index].data_ptr, codec.data_list[codec.read_index].data_size);
}
else
{
rt_kprintf("*\n");
}
/* notify transmitted complete. */
if (codec.parent.tx_complete != RT_NULL)
{
codec.parent.tx_complete(&codec.parent, data_ptr);
// rt_kprintf("-\n");
}
}