rtt-f030/examples/test/device_test.c

521 lines
17 KiB
C
Raw Normal View History

/*
* File : device_test.c
* This file is part of RT-Thread RTOS
* COPYRIGHT (C) 2011, RT-Thread Development Team
*
* The license and distribution terms for this file may be
* found in the file LICENSE in this distribution or at
* http://openlab.rt-thread.com/license/LICENSE.
*
* Change Logs:
* Date Author Notes
* 2011-01-01 aozima the first version.
* 2012-02-11 aozima add multiple sector speed test.
* 2012-05-27 aozima use rt_deice API.
*/
#include <rtthread.h>
/* calculate speed */
static void calculate_speed_print(rt_uint32_t speed)
{
rt_uint32_t k,m;
k = speed/1024UL;
if( k )
{
m = k/1024UL;
if( m )
{
rt_kprintf("%d.%dMbyte/s",m,k%1024UL*100/1024UL);
}
else
{
rt_kprintf("%d.%dKbyte/s",k,speed%1024UL*100/1024UL);
}
}
else
{
rt_kprintf("%dbyte/s",speed);
}
}
static rt_err_t _block_device_test(rt_device_t device)
{
rt_err_t result;
struct rt_device_blk_geometry geometry;
rt_uint8_t * read_buffer = RT_NULL;
rt_uint8_t * write_buffer = RT_NULL;
rt_kprintf("\r\n");
if( (device->flag & RT_DEVICE_FLAG_RDWR) == RT_DEVICE_FLAG_RDWR )
{
// device can read and write.
// step 1: open device
result = rt_device_open(device,RT_DEVICE_FLAG_RDWR);
if( result != RT_EOK )
{
return result;
}
// step 2: get device info
rt_memset(&geometry, 0, sizeof(geometry));
result = rt_device_control(device,
RT_DEVICE_CTRL_BLK_GETGEOME,
&geometry);
if( result != RT_EOK )
{
rt_kprintf("device : %s cmd RT_DEVICE_CTRL_BLK_GETGEOME failed.\r\n");
return result;
}
rt_kprintf("device info:\r\n");
rt_kprintf("sector size : %d byte\r\n", geometry.bytes_per_sector);
rt_kprintf("sector count : %d \r\n", geometry.sector_count);
rt_kprintf("block size : %d byte\r\n", geometry.block_size);
rt_kprintf("\r\n");
read_buffer = rt_malloc(geometry.bytes_per_sector);
if( read_buffer == RT_NULL )
{
rt_kprintf("no memory for read_buffer!\r\n");
goto __return;
}
write_buffer = rt_malloc(geometry.bytes_per_sector);
if( write_buffer == RT_NULL )
{
rt_kprintf("no memory for write_buffer!\r\n");
goto __return;
}
/* step 3: R/W test */
{
rt_uint32_t i, err_count, sector_no;
rt_uint8_t * data_point;
i = rt_device_read(device, 0, read_buffer, 1);
if(i != 1)
{
rt_kprintf("read device :%s ", device->parent.name);
rt_kprintf("the first sector failed.\r\n");
goto __return;
}
data_point = write_buffer;
for(i=0; i<geometry.bytes_per_sector; i++)
{
*data_point++ = (rt_uint8_t)i;
}
/* write first sector */
sector_no = 0;
data_point = write_buffer;
*data_point++ = (rt_uint8_t)sector_no;
i = rt_device_write(device, sector_no, write_buffer,1);
if( i != 1 )
{
rt_kprintf("read the first sector success!\r\n");
rt_kprintf("but write device :%s ", device->parent.name);
rt_kprintf("the first sector failed.\r\n");
rt_kprintf("maybe readonly!\r\n");
goto __return;
}
/* write the second sector */
sector_no = 1;
data_point = write_buffer;
*data_point++ = (rt_uint8_t)sector_no;
i = rt_device_write(device,sector_no,write_buffer,1);
if( i != 1 )
{
rt_kprintf("write device :%s ",device->parent.name);
rt_kprintf("the second sector failed.\r\n");
goto __return;
}
/* write the end sector */
sector_no = geometry.sector_count-1;
data_point = write_buffer;
*data_point++ = (rt_uint8_t)sector_no;
i = rt_device_write(device,sector_no,write_buffer,1);
if( i != 1 )
{
rt_kprintf("write device :%s ",device->parent.name);
rt_kprintf("the end sector failed.\r\n");
goto __return;
}
/* verify first sector */
sector_no = 0;
i = rt_device_read(device,sector_no,read_buffer,1);
if( i != 1 )
{
rt_kprintf("read device :%s ",device->parent.name);
rt_kprintf("the first sector failed.\r\n");
goto __return;
}
err_count = 0;
data_point = read_buffer;
if( (*data_point++) != (rt_uint8_t)sector_no)
{
err_count++;
}
for(i=1; i<geometry.bytes_per_sector; i++)
{
if( (*data_point++) != (rt_uint8_t)i )
{
err_count++;
}
}
if( err_count > 0 )
{
rt_kprintf("verify device :%s ",device->parent.name);
rt_kprintf("the first sector failed.\r\n");
goto __return;
}
/* verify sector sector */
sector_no = 1;
i = rt_device_read(device,sector_no,read_buffer,1);
if( i != 1 )
{
rt_kprintf("read device :%s ",device->parent.name);
rt_kprintf("the second sector failed.\r\n");
goto __return;
}
err_count = 0;
data_point = read_buffer;
if( (*data_point++) != (rt_uint8_t)sector_no)
{
err_count++;
}
for(i=1; i<geometry.bytes_per_sector; i++)
{
if( (*data_point++) != (rt_uint8_t)i )
{
err_count++;
}
}
if( err_count > 0 )
{
rt_kprintf("verify device :%s ",device->parent.name);
rt_kprintf("the second sector failed.\r\n");
goto __return;
}
/* verify the end sector */
sector_no = geometry.sector_count-1;
i = rt_device_read(device,sector_no,read_buffer,1);
if( i != 1 )
{
rt_kprintf("read device :%s ",device->parent.name);
rt_kprintf("the end sector failed.\r\n");
goto __return;
}
err_count = 0;
data_point = read_buffer;
if( (*data_point++) != (rt_uint8_t)sector_no)
{
err_count++;
}
for(i=1; i<geometry.bytes_per_sector; i++)
{
if( (*data_point++) != (rt_uint8_t)i )
{
err_count++;
}
}
if( err_count > 0 )
{
rt_kprintf("verify device :%s ",device->parent.name);
rt_kprintf("the end sector failed.\r\n");
goto __return;
}
rt_kprintf("device R/W test pass!\r\n");
} /* step 3: I/O R/W test */
rt_kprintf("\r\nRT_TICK_PER_SECOND:%d\r\n", RT_TICK_PER_SECOND);
// step 4: continuous single sector speed test
{
rt_uint32_t tick_start,tick_end;
rt_uint32_t i;
rt_kprintf("\r\ncontinuous single sector speed test:\r\n");
if( geometry.sector_count < 10 )
{
rt_kprintf("device sector_count < 10, speed test abort!\r\n");
}
else
{
unsigned int sector;
// sign sector write
rt_kprintf("write: ");
sector = 0;
tick_start = rt_tick_get();
for(i=0; i<200; i++)
{
sector += rt_device_write(device, i, read_buffer, 1);
if((i != 0) && ((i%4) == 0) )
{
if(sector < 4)
{
rt_kprintf("#");
}
else
{
rt_kprintf("<");
}
sector = 0;
}
}
tick_end = rt_tick_get();
rt_kprintf("\r\nwrite 200 sector from %d to %d, ",tick_start,tick_end);
calculate_speed_print( (geometry.bytes_per_sector*200UL*RT_TICK_PER_SECOND)/(tick_end-tick_start) );
rt_kprintf("\r\n");
// sign sector read
rt_kprintf("read : ");
sector = 0;
tick_start = rt_tick_get();
for(i=0; i<200; i++)
{
sector += rt_device_read(device, i, read_buffer, 1);
if((i != 0) && ((i%4) == 0) )
{
if(sector < 4)
{
rt_kprintf("#");
}
else
{
rt_kprintf(">");
}
sector = 0;
}
}
tick_end = rt_tick_get();
rt_kprintf("\r\nread 200 sector from %d to %d, ",tick_start,tick_end);
calculate_speed_print( (geometry.bytes_per_sector*200UL*RT_TICK_PER_SECOND)/(tick_end-tick_start) );
rt_kprintf("\r\n");
}
}// step 4: speed test
// step 5: random single sector speed test
{
rt_uint32_t tick_start,tick_end;
rt_uint32_t i;
rt_kprintf("\r\nrandom single sector speed test:\r\n");
if( geometry.sector_count < 10 )
{
rt_kprintf("device sector_count < 10, speed test abort!\r\n");
}
else
{
unsigned int sector;
// sign sector write
rt_kprintf("write: ");
sector = 0;
tick_start = rt_tick_get();
for(i=0; i<200; i++)
{
sector += rt_device_write(device, (geometry.sector_count / 10) * (i%10) + (i%10), read_buffer, 1);
if((i != 0) && ((i%4) == 0) )
{
if(sector < 4)
{
rt_kprintf("#");
}
else
{
rt_kprintf("<");
}
sector = 0;
}
}
tick_end = rt_tick_get();
rt_kprintf("\r\nwrite 200 sector from %d to %d, ",tick_start,tick_end);
calculate_speed_print( (geometry.bytes_per_sector*200UL*RT_TICK_PER_SECOND)/(tick_end-tick_start) );
rt_kprintf("\r\n");
// sign sector read
rt_kprintf("read : ");
sector = 0;
tick_start = rt_tick_get();
for(i=0; i<200; i++)
{
sector += rt_device_read(device, (geometry.sector_count / 10) * (i%10) + (i%10), read_buffer, 1);
if((i != 0) && ((i%4) == 0) )
{
if(sector < 4)
{
rt_kprintf("#");
}
else
{
rt_kprintf(">");
}
sector = 0;
}
}
tick_end = rt_tick_get();
rt_kprintf("\r\nread 200 sector from %d to %d, ",tick_start,tick_end);
calculate_speed_print( (geometry.bytes_per_sector*200UL*RT_TICK_PER_SECOND)/(tick_end-tick_start) );
rt_kprintf("\r\n");
}
}// step 4: speed test
/* step 6: multiple sector speed test */
{
rt_uint8_t * multiple_buffer;
rt_uint8_t * ptr;
rt_uint32_t tick_start,tick_end;
rt_uint32_t sector,i;
rt_kprintf("\r\nmultiple sector speed test\r\n");
for(sector=2; sector<256; sector=sector*2)
{
multiple_buffer = rt_malloc(geometry.bytes_per_sector * sector);
if(multiple_buffer == RT_NULL)
{
rt_kprintf("no memory for %d sector! multiple sector speed test abort!\r\n", sector);
break;
}
rt_memset(multiple_buffer, sector, geometry.bytes_per_sector * sector);
rt_kprintf("write: ");
tick_start = rt_tick_get();
for(i=0; i<10; i++)
{
rt_size_t n;
n = rt_device_write(device, 50, multiple_buffer, sector);
if(n == sector)
{
rt_kprintf("<");
}
else
{
rt_kprintf("#");
}
}
tick_end = rt_tick_get();
rt_kprintf("\r\n");
rt_kprintf("multiple write %d sector speed : ", sector);
calculate_speed_print( (geometry.bytes_per_sector * sector * 10 * RT_TICK_PER_SECOND)/(tick_end-tick_start) );
rt_kprintf("\r\n");
rt_memset(multiple_buffer, ~sector, geometry.bytes_per_sector * sector);
rt_kprintf("read : ");
tick_start = rt_tick_get();
for(i=0; i<10; i++)
{
rt_size_t n;
n = rt_device_read(device, 50, multiple_buffer, sector);
if(n == sector)
{
rt_kprintf(">");
}
else
{
rt_kprintf("#");
}
}
tick_end = rt_tick_get();
rt_kprintf("\r\n");
rt_kprintf("multiple read %d sector speed : ", sector);
calculate_speed_print( (geometry.bytes_per_sector * sector * 10 * RT_TICK_PER_SECOND)/(tick_end-tick_start) );
ptr = multiple_buffer;
for(i=0; i<geometry.bytes_per_sector * sector; i++)
{
if(*ptr != sector)
{
rt_kprintf(" but data verify fail!");
break;
}
ptr++;
}
rt_kprintf("\r\n\r\n");
rt_free(multiple_buffer);
}
} /* step 5: multiple sector speed test */
rt_device_close(device);
return RT_EOK;
}// device can read and write.
else
{
// device read only
rt_device_close(device);
return RT_EOK;
}// device read only
__return:
if( read_buffer != RT_NULL )
{
rt_free(read_buffer);
}
if( write_buffer != RT_NULL )
{
rt_free(write_buffer);
}
rt_device_close(device);
return RT_ERROR;
}
int device_test(const char * device_name)
{
rt_device_t device = RT_NULL;
// step 1:find device
device = rt_device_find(device_name);
if( device == RT_NULL)
{
rt_kprintf("device %s: not found!\r\n");
return RT_ERROR;
}
// step 2:init device
if (!(device->flag & RT_DEVICE_FLAG_ACTIVATED))
{
rt_err_t result;
result = rt_device_init(device);
if (result != RT_EOK)
{
rt_kprintf("To initialize device:%s failed. The error code is %d\r\n",
device->parent.name, result);
return result;
}
else
{
device->flag |= RT_DEVICE_FLAG_ACTIVATED;
}
}
// step 3: device test
switch( device->type )
{
case RT_Device_Class_Block :
rt_kprintf("block device!\r\n");
return _block_device_test(device);
default:
rt_kprintf("unkown device type : %02X",device->type);
return RT_ERROR;
}
}
#ifdef RT_USING_FINSH
#include <finsh.h>
FINSH_FUNCTION_EXPORT(device_test, e.g: device_test("sd0"));
#endif