rtt-f030/bsp/gd32450z-eval/Libraries/GD32F4xx_standard_peripheral/Source/gd32f4xx_usart.c

953 lines
29 KiB
C
Raw Normal View History

2017-08-22 15:52:57 +08:00
/*!
\file gd32f4xx_usart.c
\brief USART driver
*/
/*
Copyright (C) 2016 GigaDevice
2016-08-15, V1.0.0, firmware for GD32F4xx
*/
#include "gd32f4xx_usart.h"
/*!
\brief reset USART/UART
\param[in] usart_periph: USARTx(x=0,1,2,5)/UARTx(x=3,4,6,7)
\param[out] none
\retval none
*/
void usart_deinit(uint32_t usart_periph)
{
switch(usart_periph){
case USART0:
rcu_periph_reset_enable(RCU_USART0RST);
rcu_periph_reset_disable(RCU_USART0RST);
break;
case USART1:
rcu_periph_reset_enable(RCU_USART1RST);
rcu_periph_reset_disable(RCU_USART1RST);
break;
case USART2:
rcu_periph_reset_enable(RCU_USART2RST);
rcu_periph_reset_disable(RCU_USART2RST);
break;
case USART5:
rcu_periph_reset_enable(RCU_USART5RST);
rcu_periph_reset_disable(RCU_USART5RST);
break;
case UART3:
rcu_periph_reset_enable(RCU_UART3RST);
rcu_periph_reset_disable(RCU_UART3RST);
break;
case UART4:
rcu_periph_reset_enable(RCU_UART4RST);
rcu_periph_reset_disable(RCU_UART4RST);
break;
case UART6:
rcu_periph_reset_enable(RCU_UART6RST);
rcu_periph_reset_disable(RCU_UART6RST);
break;
case UART7:
rcu_periph_reset_enable(RCU_UART7RST);
rcu_periph_reset_disable(RCU_UART7RST);
break;
default:
break;
}
}
/*!
\brief configure USART baud rate value
\param[in] usart_periph: USARTx(x=0,1,2,5)/UARTx(x=3,4,6,7)
\param[in] baudval: baud rate value
\param[out] none
\retval none
*/
void usart_baudrate_set(uint32_t usart_periph, uint32_t baudval)
{
uint32_t uclk=0U, intdiv=0U, fradiv=0U, udiv=0U;
switch(usart_periph){
/* get clock frequency */
case USART0:
uclk=rcu_clock_freq_get(CK_APB2);
break;
case USART5:
uclk=rcu_clock_freq_get(CK_APB2);
break;
case USART1:
uclk=rcu_clock_freq_get(CK_APB1);
break;
case USART2:
uclk=rcu_clock_freq_get(CK_APB1);
break;
case UART3:
uclk=rcu_clock_freq_get(CK_APB1);
break;
case UART4:
uclk=rcu_clock_freq_get(CK_APB1);
break;
case UART6:
uclk=rcu_clock_freq_get(CK_APB1);
break;
case UART7:
uclk=rcu_clock_freq_get(CK_APB1);
break;
default:
break;
}
if(USART_CTL0(usart_periph) & USART_CTL0_OVSMOD){
/* when oversampling by 8, configure the value of USART_BAUD */
udiv = ((2U*uclk) + baudval/2U)/baudval;
intdiv = udiv & 0xfff0U;
fradiv = udiv & 0x7U;
USART_BAUD(usart_periph) |= ((USART_BAUD_FRADIV | USART_BAUD_INTDIV) & (intdiv | fradiv));
}else{
/* when oversampling by 16, configure the value of USART_BAUD */
udiv = (uclk+baudval/2U)/baudval;
intdiv = udiv & 0xfff0U;
fradiv = udiv & 0xfU;
USART_BAUD(usart_periph) |= ((USART_BAUD_FRADIV | USART_BAUD_INTDIV) & (intdiv | fradiv));
}
}
/*!
\brief configure USART parity function
\param[in] usart_periph: USARTx(x=0,1,2,5)/UARTx(x=3,4,6,7)
\param[in] paritycfg: configure USART parity
\arg USART_PM_NONE: no parity
\arg USART_PM_ODD: odd parity
\arg USART_PM_EVEN: even parity
\param[out] none
\retval none
*/
void usart_parity_config(uint32_t usart_periph, uint32_t paritycfg)
{
/* clear USART_CTL0 PM,PCEN Bits */
USART_CTL0(usart_periph) &= ~(USART_CTL0_PM | USART_CTL0_PCEN);
/* configure USART parity mode */
USART_CTL0(usart_periph) |= paritycfg ;
}
/*!
\brief configure USART word length
\param[in] usart_periph: USARTx(x=0,1,2,5)/UARTx(x=3,4,6,7)
\param[in] wlen: USART word length configure
\arg USART_WL_8BIT: 8 bits
\arg USART_WL_9BIT: 9 bits
\param[out] none
\retval none
*/
void usart_word_length_set(uint32_t usart_periph, uint32_t wlen)
{
/* clear USART_CTL0 WL bit */
USART_CTL0(usart_periph) &= ~USART_CTL0_WL;
/* configure USART word length */
USART_CTL0(usart_periph) |= wlen;
}
/*!
\brief configure USART stop bit length
\param[in] usart_periph: USARTx(x=0,1,2,5)/UARTx(x=3,4,6,7)
\param[in] stblen: USART stop bit configure
\arg USART_STB_1BIT: 1 bit
\arg USART_STB_0_5BIT: 0.5 bit
\arg USART_STB_2BIT: 2 bits
\arg USART_STB_1_5BIT: 1.5 bits
\param[out] none
\retval none
*/
void usart_stop_bit_set(uint32_t usart_periph, uint32_t stblen)
{
/* clear USART_CTL1 STB bits */
USART_CTL1(usart_periph) &= ~USART_CTL1_STB;
/* configure USART stop bits */
USART_CTL1(usart_periph) |= stblen;
}
/*!
\brief enable USART
\param[in] usart_periph: USARTx(x=0,1,2,5)/UARTx(x=3,4,6,7)
\param[out] none
\retval none
*/
void usart_enable(uint32_t usart_periph)
{
USART_CTL0(usart_periph) |= USART_CTL0_UEN;
}
/*!
\brief disable USART
\param[in] usart_periph: USARTx(x=0,1,2,5)/UARTx(x=3,4,6,7)
\param[out] none
\retval none
*/
void usart_disable(uint32_t usart_periph)
{
USART_CTL0(usart_periph) &= ~(USART_CTL0_UEN);
}
/*!
\brief configure USART transmitter
\param[in] usart_periph: USARTx(x=0,1,2,5)/UARTx(x=3,4,6,7)
\param[in] rtconfig: enable or disable USART transmitter
\arg USART_TRANSMIT_ENABLE: enable USART transmission
\arg USART_TRANSMIT_DISABLE: enable USART transmission
\param[out] none
\retval none
*/
void usart_transmit_config(uint32_t usart_periph, uint32_t txconfig)
{
uint32_t ctl = 0U;
ctl = USART_CTL0(usart_periph);
ctl &= ~USART_CTL0_TEN;
ctl |= txconfig;
/* configure transfer mode */
USART_CTL0(usart_periph) = ctl;
}
/*!
\brief configure USART receiver
\param[in] usart_periph: USARTx(x=0,1,2,5)/UARTx(x=3,4,6,7)
\param[in] rtconfig: enable or disable USART receiver
\arg USART_RECEIVE_ENABLE: enable USART reception
\arg USART_RECEIVE_DISABLE: disable USART reception
\param[out] none
\retval none
*/
void usart_receive_config(uint32_t usart_periph, uint32_t rxconfig)
{
uint32_t ctl = 0U;
ctl = USART_CTL0(usart_periph);
ctl &= ~USART_CTL0_REN;
ctl |= rxconfig;
/* configure transfer mode */
USART_CTL0(usart_periph) = ctl;
}
/*!
\brief data is transmitted/received with the LSB/MSB first
\param[in] usart_periph: USARTx(x=0,1,2,5)
\param[in] msbf: LSB/MSB
\arg USART_MSBF_LSB: LSB first
\arg USART_MSBF_MSB: MSB first
\param[out] none
\retval none
*/
void usart_data_first_config(uint32_t usart_periph, uint32_t msbf)
{
USART_CTL3(usart_periph) &= ~(USART_CTL3_MSBF);
USART_CTL3(usart_periph) |= msbf;
}
/*!
\brief configure USART inversion
\param[in] usart_periph: USARTx(x=0,1,2,5)
\param[in] invertpara: refer to enum USART_INVERT_CONFIG
\arg USART_DINV_ENABLE: data bit level inversion
\arg USART_DINV_DISABLE: data bit level not inversion
\arg USART_TXPIN_ENABLE: TX pin level inversion
\arg USART_TXPIN_DISABLE: TX pin level not inversion
\arg USART_RXPIN_ENABLE: RX pin level inversion
\arg USART_RXPIN_DISABLE: RX pin level not inversion
\param[out] none
\retval none
*/
void usart_invert_config(uint32_t usart_periph, usart_invert_enum invertpara)
{
/* inverted or not the specified siginal */
switch(invertpara){
case USART_DINV_ENABLE:
USART_CTL3(usart_periph) |= USART_CTL3_DINV;
break;
case USART_TXPIN_ENABLE:
USART_CTL3(usart_periph) |= USART_CTL3_TINV;
break;
case USART_RXPIN_ENABLE:
USART_CTL3(usart_periph) |= USART_CTL3_RINV;
break;
case USART_DINV_DISABLE:
USART_CTL3(usart_periph) &= ~(USART_CTL3_DINV);
break;
case USART_TXPIN_DISABLE:
USART_CTL3(usart_periph) &= ~(USART_CTL3_TINV);
break;
case USART_RXPIN_DISABLE:
USART_CTL3(usart_periph) &= ~(USART_CTL3_RINV);
break;
default:
break;
}
}
/*!
\brief configure the USART oversample mode
\param[in] usart_periph: USARTx(x=0,1,2,5)/UARTx(x=3,4,6,7)
\param[in] oversamp: oversample value
\arg USART_OVSMOD_8: 8 bits
\arg USART_OVSMOD_16: 16 bits
\param[out] none
\retval none
*/
void usart_oversample_config(uint32_t usart_periph, uint32_t oversamp)
{
/* clear OVSMOD bit */
USART_CTL0(usart_periph) &= ~(USART_CTL0_OVSMOD);
USART_CTL0(usart_periph) |= oversamp;
}
/*!
\brief configure sample bit method
\param[in] usart_periph: USARTx(x=0,1,2,5)/UARTx(x=3,4,6,7)
\param[in] obsm: sample bit
\arg USART_OSB_1bit: 1 bit
\arg USART_OSB_3bit: 3 bits
\param[out] none
\retval none
*/
void usart_sample_bit_config(uint32_t usart_periph, uint32_t obsm)
{
USART_CTL2(usart_periph) &= ~(USART_CTL2_OSB);
USART_CTL2(usart_periph) |= obsm;
}
/*!
\brief enable receiver timeout of USART
\param[in] usart_periph: USARTx(x=0,1,2,5)
\param[out] none
\retval none
*/
void usart_receiver_timeout_enable(uint32_t usart_periph)
{
USART_CTL3(usart_periph) |= USART_CTL3_RTEN;
}
/*!
\brief disable receiver timeout of USART
\param[in] usart_periph: USARTx(x=0,1,2,5)
\param[out] none
\retval none
*/
void usart_receiver_timeout_disable(uint32_t usart_periph)
{
USART_CTL3(usart_periph) &= ~(USART_CTL3_RTEN);
}
/*!
\brief set the receiver timeout threshold of USART
\param[in] usart_periph: USARTx(x=0,1,2,5)
\param[in] rtimeout: 0-0x00FFFFFF
\param[out] none
\retval none
*/
void usart_receiver_timeout_threshold_config(uint32_t usart_periph, uint32_t rtimeout)
{
USART_RT(usart_periph) &= ~(USART_RT_RT);
USART_RT(usart_periph) |= rtimeout;
}
/*!
\brief USART transmit data function
\param[in] usart_periph: USARTx(x=0,1,2,5)/UARTx(x=3,4,6,7)
\param[in] data: data of transmission
\param[out] none
\retval none
*/
void usart_data_transmit(uint32_t usart_periph, uint32_t data)
{
USART_DATA(usart_periph) = ((uint16_t)USART_DATA_DATA & data);
}
/*!
\brief USART receive data function
\param[in] usart_periph: USARTx(x=0,1,2,5)/UARTx(x=3,4,6,7)
\param[out] none
\retval data of received
*/
uint16_t usart_data_receive(uint32_t usart_periph)
{
return (uint16_t)(USART_DATA(usart_periph) & (uint16_t)USART_DATA_DATA);
}
/*!
\brief configure the address of the USART in wake up by address match mode
\param[in] usart_periph: USARTx(x=0,1,2,5)/UARTx(x=3,4,6,7)
\param[in] addr: address of USART/UART
\param[out] none
\retval none
*/
void usart_address_config(uint32_t usart_periph, uint8_t addr)
{
USART_CTL1(usart_periph) &= ~(USART_CTL1_ADDR);
USART_CTL1(usart_periph) |= (USART_CTL1_ADDR & addr);
}
/*!
\brief receiver in mute mode
\param[in] usart_periph: USARTx(x=0,1,2,5)/UARTx(x=3,4,6,7)
\param[out] none
\retval none
*/
void usart_mute_mode_enable(uint32_t usart_periph)
{
USART_CTL0(usart_periph) |= USART_CTL0_RWU;
}
/*!
\brief receiver in active mode
\param[in] usart_periph: USARTx(x=0,1,2,5)/UARTx(x=3,4,6,7)
\param[out] none
\retval none
*/
void usart_mute_mode_disable(uint32_t usart_periph)
{
USART_CTL0(usart_periph) &= ~(USART_CTL0_RWU);
}
/*!
\brief configure wakeup method in mute mode
\param[in] usart_periph: USARTx(x=0,1,2,5)/UARTx(x=3,4,6,7)
\param[in] wmehtod: two method be used to enter or exit the mute mode
\arg USART_WM_IDLE: idle line
\arg USART_WM_ADDR: address mask
\param[out] none
\retval none
*/
void usart_mute_mode_wakeup_config(uint32_t usart_periph, uint32_t wmehtod)
{
USART_CTL0(usart_periph) &= ~(USART_CTL0_WM);
USART_CTL0(usart_periph) |= wmehtod;
}
/*!
\brief enable LIN mode
\param[in] usart_periph: USARTx(x=0,1,2,5)/UARTx(x=3,4,6,7)
\param[out] none
\retval none
*/
void usart_lin_mode_enable(uint32_t usart_periph)
{
USART_CTL1(usart_periph) |= USART_CTL1_LMEN;
}
/*!
\brief disable LIN mode
\param[in] usart_periph: USARTx(x=0,1,2,5)/UARTx(x=3,4,6,7)
\param[out] none
\retval none
*/
void usart_lin_mode_disable(uint32_t usart_periph)
{
USART_CTL1(usart_periph) &= ~(USART_CTL1_LMEN);
}
/*!
\brief configure lin break frame length
\param[in] usart_periph: USARTx(x=0,1,2,5)/UARTx(x=3,4,6,7)
\param[in] lblen: lin break frame length
\arg USART_LBLEN_10B: 10 bits
\arg USART_LBLEN_11B: 11 bits
\param[out] none
\retval none
*/
void usart_lin_break_dection_length_config(uint32_t usart_periph, uint32_t lblen)
{
USART_CTL1(usart_periph) &= ~(USART_CTL1_LBLEN);
USART_CTL1(usart_periph) |= (USART_CTL1_LBLEN & lblen);
}
/*!
\brief send break frame
\param[in] usart_periph: USARTx(x=0,1,2,5)/UARTx(x=3,4,6,7)
\param[out] none
\retval none
*/
void usart_send_break(uint32_t usart_periph)
{
USART_CTL0(usart_periph) |= USART_CTL0_SBKCMD;
}
/*!
\brief enable half duplex mode
\param[in] usart_periph: USARTx(x=0,1,2,5)/UARTx(x=3,4,6,7)
\param[out] none
\retval none
*/
void usart_halfduplex_enable(uint32_t usart_periph)
{
USART_CTL2(usart_periph) |= USART_CTL2_HDEN;
}
/*!
\brief disable half duplex mode
\param[in] usart_periph: USARTx(x=0,1,2,5)/UARTx(x=3,4,6,7)
\param[out] none
\retval none
*/
void usart_halfduplex_disable(uint32_t usart_periph)
{
USART_CTL2(usart_periph) &= ~(USART_CTL2_HDEN);
}
/*!
\brief enable CK pin in synchronous mode
\param[in] usart_periph: USARTx(x=0,1,2,5)
\param[out] none
\retval none
*/
void usart_synchronous_clock_enable(uint32_t usart_periph)
{
USART_CTL1(usart_periph) |= USART_CTL1_CKEN;
}
/*!
\brief disable CK pin in synchronous mode
\param[in] usart_periph: USARTx(x=0,1,2,5)
\param[out] none
\retval none
*/
void usart_synchronous_clock_disable(uint32_t usart_periph)
{
USART_CTL1(usart_periph) &= ~(USART_CTL1_CKEN);
}
/*!
\brief configure USART synchronous mode parameters
\param[in] usart_periph: USARTx(x=0,1,2,5)
\param[in] clen: CK length
\arg USART_CLEN_NONE: there are 7 CK pulses for an 8 bit frame and 8 CK pulses for a 9 bit frame
\arg USART_CLEN_EN: there are 8 CK pulses for an 8 bit frame and 9 CK pulses for a 9 bit frame
\param[in] cph: clock phase
\arg USART_CPH_1CK: first clock transition is the first data capture edge
\arg USART_CPH_2CK: second clock transition is the first data capture edge
\param[in] cpl: clock polarity
\arg USART_CPL_LOW: steady low value on CK pin
\arg USART_CPL_HIGH: steady high value on CK pin
\param[out] none
\retval none
*/
void usart_synchronous_clock_config(uint32_t usart_periph, uint32_t clen, uint32_t cph, uint32_t cpl)
{
uint32_t ctl = 0U;
/* read USART_CTL1 register */
ctl = USART_CTL1(usart_periph);
/* set CK length, CK phase, CK polarity */
ctl |= (USART_CTL1_CLEN & clen) | (USART_CTL1_CPH & cph) | (USART_CTL1_CPL & cpl);
USART_CTL1(usart_periph) |= ctl;
}
/*!
\brief configure guard time value in smartcard mode
\param[in] usart_periph: USARTx(x=0,1,2,5)
\param[in] gaut: guard time value
\param[out] none
\retval none
*/
void usart_guard_time_config(uint32_t usart_periph,uint32_t gaut)
{
USART_GP(usart_periph) &= ~(USART_GP_GUAT);
USART_GP(usart_periph) |= (USART_GP_GUAT & ((gaut)<<8));
}
/*!
\brief enable smartcard mode
\param[in] usart_periph: USARTx(x=0,1,2,5)
\param[out] none
\retval none
*/
void usart_smartcard_mode_enable(uint32_t usart_periph)
{
USART_CTL2(usart_periph) |= USART_CTL2_SCEN;
}
/*!
\brief disable smartcard mode
\param[in] usart_periph: USARTx(x=0,1,2,5)
\param[out] none
\retval none
*/
void usart_smartcard_mode_disable(uint32_t usart_periph)
{
USART_CTL2(usart_periph) &= ~(USART_CTL2_SCEN);
}
/*!
\brief enable NACK in smartcard mode
\param[in] usart_periph: USARTx(x=0,1,2,5)
\param[out] none
\retval none
*/
void usart_smartcard_mode_nack_enable(uint32_t usart_periph)
{
USART_CTL2(usart_periph) |= USART_CTL2_NKEN;
}
/*!
\brief disable NACK in smartcard mode
\param[in] usart_periph: USARTx(x=0,1,2,5)
\param[out] none
\retval none
*/
void usart_smartcard_mode_nack_disable(uint32_t usart_periph)
{
USART_CTL2(usart_periph) &= ~(USART_CTL2_NKEN);
}
/*!
\brief configure smartcard auto-retry number
\param[in] usart_periph: USARTx(x=0,1,2,5)
\param[in] scrtnum: smartcard auto-retry number
\param[out] none
\retval none
*/
void usart_smartcard_autoretry_config(uint32_t usart_periph, uint32_t scrtnum)
{
USART_CTL3(usart_periph) &= ~(USART_CTL3_SCRTNUM);
USART_CTL3(usart_periph) |= (USART_CTL3_SCRTNUM & ((scrtnum)<<1));
}
/*!
\brief configure block length in Smartcard T=1 reception
\param[in] usart_periph: USARTx(x=0,1,2,5)
\param[in] bl: block length
\param[out] none
\retval none
*/
void usart_block_length_config(uint32_t usart_periph, uint32_t bl)
{
USART_RT(usart_periph) &= ~(USART_RT_BL);
USART_RT(usart_periph) |= (USART_RT_BL & ((bl)<<24));
}
/*!
\brief enable IrDA mode
\param[in] usart_periph: USARTx(x=0,1,2,5)/UARTx(x=3,4,6,7)
\param[out] none
\retval none
*/
void usart_irda_mode_enable(uint32_t usart_periph)
{
USART_CTL2(usart_periph) |= USART_CTL2_IREN;
}
/*!
\brief disable IrDA mode
\param[in] usart_periph: USARTx(x=0,1,2,5)/UARTx(x=3,4,6,7)
\param[out] none
\retval none
*/
void usart_irda_mode_disable(uint32_t usart_periph)
{
USART_CTL2(usart_periph) &= ~(USART_CTL2_IREN);
}
/*!
\brief configure the peripheral clock prescaler in USART IrDA low-power mode
\param[in] usart_periph: USARTx(x=0,1,2,5)/UARTx(x=3,4,6,7)
\param[in] psc: 0-0x00FFFFFF
\param[out] none
\retval none
*/
void usart_prescaler_config(uint32_t usart_periph, uint32_t psc)
{
USART_GP(usart_periph) &= ~(USART_GP_PSC);
USART_GP(usart_periph) |= psc;
}
/*!
\brief configure IrDA low-power
\param[in] usart_periph: USARTx(x=0,1,2,5)/UARTx(x=3,4,6,7)
\param[in] irlp: IrDA low-power or normal
\arg USART_IRLP_LOW: low-power
\arg USART_IRLP_NORMAL: normal
\param[out] none
\retval none
*/
void usart_irda_lowpower_config(uint32_t usart_periph, uint32_t irlp)
{
USART_CTL2(usart_periph) &= ~(USART_CTL2_IRLP);
USART_CTL2(usart_periph) |= (USART_CTL2_IRLP & irlp);
}
/*!
\brief configure hardware flow control RTS
\param[in] usart_periph: USARTx(x=0,1,2,5)
\param[in] hardwareflow: enable or disable RTS
\arg USART_RTS_ENABLE: enable RTS
\arg USART_RTS_DISABLE: disable RTS
\param[out] none
\retval none
*/
void usart_hardware_flow_rts_config(uint32_t usart_periph, uint32_t rtsconfig)
{
uint32_t ctl = 0U;
ctl = USART_CTL2(usart_periph);
ctl &= ~USART_CTL2_RTSEN;
ctl |= rtsconfig;
/* configure RTS */
USART_CTL2(usart_periph) = ctl;
}
/*!
\brief configure hardware flow control CTS
\param[in] usart_periph: USARTx(x=0,1,2,5)
\param[in] hardwareflow: enable or disable CTS
\arg USART_CTS_ENABLE: enable CTS
\arg USART_CTS_DISABLE: disable CTS
\param[out] none
\retval none
*/
void usart_hardware_flow_cts_config(uint32_t usart_periph, uint32_t ctsconfig)
{
uint32_t ctl = 0U;
ctl = USART_CTL2(usart_periph);
ctl &= ~USART_CTL2_CTSEN;
ctl |= ctsconfig;
/* configure CTS */
USART_CTL2(usart_periph) = ctl;
}
/*!
\brief configure break frame coherence mode
\param[in] usart_periph: USARTx(x=0,1,2,5)
\param[in] bcm:
\arg USART_BCM_NONE: no parity error is detected
\arg USART_BCM_EN: parity error is detected
\param[out] none
\retval none
*/
void usart_break_frame_coherence_config(uint32_t usart_periph, uint32_t bcm)
{
USART_CHC(usart_periph) &= ~(USART_CHC_BCM);
USART_CHC(usart_periph) |= (USART_CHC_BCM & bcm);
}
/*!
\brief configure parity check coherence mode
\param[in] usart_periph: USARTx(x=0,1,2,5)/UARTx(x=3,4,6,7)
\param[in] pcm:
\arg USART_PCM_NONE: not check parity
\arg USART_PCM_EN: check the parity
\param[out] none
\retval none
*/
void usart_parity_check_coherence_config(uint32_t usart_periph, uint32_t pcm)
{
USART_CHC(usart_periph) &= ~(USART_CHC_PCM);
USART_CHC(usart_periph) |= (USART_CHC_PCM & pcm);
}
/*!
\brief configure hardware flow control coherence mode
\param[in] usart_periph: USARTx(x=0,1,2,5)
\param[in] hcm:
\arg USART_HCM_NONE: nRTS signal equals to the rxne status register
\arg USART_HCM_EN: nRTS signal is set when the last data bit has been sampled
\param[out] none
\retval none
*/
void usart_hardware_flow_coherence_config(uint32_t usart_periph, uint32_t hcm)
{
USART_CHC(usart_periph) &= ~(USART_CHC_HCM);
USART_CHC(usart_periph) |= (USART_CHC_HCM & hcm);
}
/*!
\brief configure USART DMA reception
\param[in] usart_periph: USARTx(x=0,1,2,5)/UARTx(x=3,4,6,7)
\param[in] dmacmd: enable or disable DMA for reception
\arg USART_DENR_ENABLE: DMA enable for reception
\arg USART_DENR_DISABLE: DMA disable for reception
\param[out] none
\retval none
*/
void usart_dma_receive_config(uint32_t usart_periph, uint32_t dmacmd)
{
uint32_t ctl = 0U;
ctl = USART_CTL2(usart_periph);
ctl &= ~USART_CTL2_DENR;
ctl |= dmacmd;
/* configure DMA reception */
USART_CTL2(usart_periph) = ctl;
}
/*!
\brief configure USART DMA transmission
\param[in] usart_periph: USARTx(x=0,1,2,5)/UARTx(x=3,4,6,7)
\param[in] dmacmd: enable or disable DMA for transmission
\arg USART_DENT_ENABLE: DMA enable for transmission
\arg USART_DENT_DISABLE: DMA disable for transmission
\param[out] none
\retval none
*/
void usart_dma_transmit_config(uint32_t usart_periph, uint32_t dmacmd)
{
uint32_t ctl = 0U;
ctl = USART_CTL2(usart_periph);
ctl &= ~USART_CTL2_DENT;
ctl |= dmacmd;
/* configure DMA transmission */
USART_CTL2(usart_periph) = ctl;
}
/*!
\brief get flag in STAT0/STAT1/CHC register
\param[in] usart_periph: USARTx(x=0,1,2,5)/UARTx(x=3,4,6,7)
\param[in] flag: USART flags, refer to usart_flag_enum
\arg USART_FLAG_CTSF: CTS change flag
\arg USART_FLAG_LBDF: LIN break detected flag
\arg USART_FLAG_TBE: transmit data buffer empty
\arg USART_FLAG_TC: transmission complete
\arg USART_FLAG_RBNE: read data buffer not empty
\arg USART_FLAG_IDLEF: IDLE frame detected flag
\arg USART_FLAG_ORERR: overrun error
\arg USART_FLAG_NERR: noise error flag
\arg USART_FLAG_FERR: frame error flag
\arg USART_FLAG_PERR: parity error flag
\arg USART_FLAG_BSY: busy flag
\arg USART_FLAG_EBF: end of block flag
\arg USART_FLAG_RTF: receiver timeout flag
\arg USART_FLAG_EPERR: early parity error flag
\param[out] none
\retval FlagStatus: SET or RESET
*/
FlagStatus usart_flag_get(uint32_t usart_periph, usart_flag_enum flag)
{
if(RESET != (USART_REG_VAL(usart_periph, flag) & BIT(USART_BIT_POS(flag)))){
return SET;
}else{
return RESET;
}
}
/*!
\brief clear flag in STAT0/STAT1/CHC register
\param[in] usart_periph: USARTx(x=0,1,2,5)/UARTx(x=3,4,6,7)
\param[in] flag: USART flags, refer to usart_flag_enum
\arg USART_FLAG_CTSF: CTS change flag
\arg USART_FLAG_LBDF: LIN break detected flag
\arg USART_FLAG_TC: transmission complete
\arg USART_FLAG_RBNE: read data buffer not empty
\arg USART_FLAG_EBF: end of block flag
\arg USART_FLAG_RTF: receiver timeout flag
\arg USART_FLAG_EPERR: early parity error flag
\param[out] none
\retval none
*/
void usart_flag_clear(uint32_t usart_periph, usart_flag_enum flag)
{
USART_REG_VAL(usart_periph, flag) &= ~BIT(USART_BIT_POS(flag));
}
/*!
\brief enable USART interrupt
\param[in] usart_periph: USARTx(x=0,1,2,5)/UARTx(x=3,4,6,7)
\param[in] int_flag
\arg USART_INTEN_PERRIE: parity error interrupt
\arg USART_INTEN_TBEIE: transmitter buffer empty interrupt
\arg USART_INTEN_TCIE: transmission complete interrupt
\arg USART_INTEN_RBNEIE: read data buffer not empty interrupt and overrun error interrupt
\arg USART_INTEN_IDLEIE: IDLE line detected interrupt
\arg USART_INTEN_LBDIE: LIN break detected interrupt
\arg USART_INTEN_ERRIE: error interrupt
\arg USART_INTEN_CTSIE: CTS interrupt
\arg USART_INTEN_RTIE: interrupt enable bit of receive timeout event
\arg USART_INTEN_EBIE: interrupt enable bit of end of block event
\param[out] none
*/
void usart_interrupt_enable(uint32_t usart_periph, uint32_t int_flag)
{
uint32_t usart_reg = 0U;
usart_reg = int_flag & (~(uint32_t)USART_INTEN_MASK);
int_flag &= USART_INTEN_MASK;
/* flags in USART_CTL0 */
if(USART_INTS_CTL0 == usart_reg){
USART_CTL0(usart_periph) |= int_flag;
/* flags in USART_CTL1 */
}else if(USART_INTS_CTL1 == usart_reg){
USART_CTL1(usart_periph) |= int_flag;
/* flags in USART_CTL2 */
}else if(USART_INTS_CTL2 == usart_reg){
USART_CTL2(usart_periph) |= int_flag;
/* flags in USART_CTL3 */
}else if(USART_INTS_CTL3 == usart_reg){
USART_CTL3(usart_periph) |= int_flag;
}else{
/* illegal parameters */
}
}
/*!
\brief disable USART interrupt
\param[in] usart_periph: USARTx(x=0,1,2,5)/UARTx(x=3,4,6,7)
\param[in] int_flag
\arg USART_INTEN_PERRIE: parity error interrupt
\arg USART_INTEN_TBEIE: transmitter buffer empty interrupt
\arg USART_INTEN_TCIE: transmission complete interrupt
\arg USART_INTEN_RBNEIE: read data buffer not empty interrupt and overrun error interrupt
\arg USART_INTEN_IDLEIE: IDLE line detected interrupt
\arg USART_INTEN_LBDIE: LIN break detected interrupt
\arg USART_INTEN_ERRIE: error interrupt
\arg USART_INTEN_CTSIE: CTS interrupt
\arg USART_INTEN_RTIE: interrupt enable bit of receive timeout event
\arg USART_INTEN_EBIE: interrupt enable bit of end of block event
\param[out] none
*/
void usart_interrupt_disable(uint32_t usart_periph, uint32_t int_flag)
{
uint32_t usart_reg = 0U;
usart_reg = int_flag & (~(uint32_t)USART_INTEN_MASK);
int_flag &= USART_INTEN_MASK;
/* flags in USART_CTL0 */
if(USART_INTS_CTL0 == usart_reg){
USART_CTL0(usart_periph) &= ~(int_flag);
/* flags in USART_CTL1 */
}else if(USART_INTS_CTL1 == usart_reg){
USART_CTL1(usart_periph) &= ~(int_flag);
/* flags in USART_CTL2 */
}else if(USART_INTS_CTL2 == usart_reg){
USART_CTL2(usart_periph) &= ~(int_flag);
/* flags in USART_CTL3 */
}else if(USART_INTS_CTL3 == usart_reg){
USART_CTL3(usart_periph) &= ~(int_flag);
}else{
/* illegal parameters */
}
}
/*!
\brief get USART interrupt enable flag
\param[in] usart_periph: USARTx(x=0,1,2,5)/UARTx(x=3,4,6,7)
\param[in] int_flag
\arg USART_INT_PERRIE: parity error interrupt
\arg USART_INT_TBEIE: transmitter buffer empty interrupt
\arg USART_INT_TCIE: transmission complete interrupt
\arg USART_INT_RBNEIE: read data buffer not empty interrupt and overrun error interrupt
\arg USART_INT_IDLEIE: IDLE line detected interrupt
\arg USART_INT_LBDIE: LIN break detected interrupt
\arg USART_INT_CTSIE: CTS interrupt
\arg USART_INT_ERRIE: error interrupt
\arg USART_INT_EBIE: interrupt enable bit of end of block event
\arg USART_INT_RTIE: interrupt enable bit of receive timeout event
\param[out] none
\retval FlagStatus
*/
FlagStatus usart_interrupt_flag_get(uint32_t usart_periph, uint32_t int_flag)
{
if(RESET != (USART_REG_VAL(usart_periph, int_flag) & BIT(USART_BIT_POS(int_flag)))){
return SET;
}else{
return RESET;
}
}