297 lines
10 KiB
C
Raw Normal View History

/* ***** BEGIN LICENSE BLOCK *****
* Version: RCSL 1.0/RPSL 1.0
*
* Portions Copyright (c) 1995-2002 RealNetworks, Inc. All Rights Reserved.
*
* The contents of this file, and the files included with this file, are
* subject to the current version of the RealNetworks Public Source License
* Version 1.0 (the "RPSL") available at
* http://www.helixcommunity.org/content/rpsl unless you have licensed
* the file under the RealNetworks Community Source License Version 1.0
* (the "RCSL") available at http://www.helixcommunity.org/content/rcsl,
* in which case the RCSL will apply. You may also obtain the license terms
* directly from RealNetworks. You may not use this file except in
* compliance with the RPSL or, if you have a valid RCSL with RealNetworks
* applicable to this file, the RCSL. Please see the applicable RPSL or
* RCSL for the rights, obligations and limitations governing use of the
* contents of the file.
*
* This file is part of the Helix DNA Technology. RealNetworks is the
* developer of the Original Code and owns the copyrights in the portions
* it created.
*
* This file, and the files included with this file, is distributed and made
* available on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER
* EXPRESS OR IMPLIED, AND REALNETWORKS HEREBY DISCLAIMS ALL SUCH WARRANTIES,
* INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY, FITNESS
* FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT.
*
* Technology Compatibility Kit Test Suite(s) Location:
* http://www.helixcommunity.org/content/tck
*
* Contributor(s):
*
* ***** END LICENSE BLOCK ***** */
/**************************************************************************************
* Fixed-point MP3 decoder
* Jon Recker (jrecker@real.com), Ken Cooke (kenc@real.com)
* June 2003
*
* stproc.c - mid-side and intensity (MPEG1 and MPEG2) stereo processing
**************************************************************************************/
#include "coder.h"
#include "assembly.h"
/**************************************************************************************
* Function: MidSideProc
*
* Description: sum-difference stereo reconstruction
*
* Inputs: vector x with dequantized samples from left and right channels
* number of non-zero samples (MAX of left and right)
* assume 1 guard bit in input
* guard bit mask (left and right channels)
*
* Outputs: updated sample vector x
* updated guard bit mask
*
* Return: none
*
* Notes: assume at least 1 GB in input
**************************************************************************************/
void MidSideProc(int x[MAX_NCHAN][MAX_NSAMP], int nSamps, int mOut[2])
{
int i, xr, xl, mOutL, mOutR;
/* L = (M+S)/sqrt(2), R = (M-S)/sqrt(2)
* NOTE: 1/sqrt(2) done in DequantChannel() - see comments there
*/
mOutL = mOutR = 0;
for(i = 0; i < nSamps; i++) {
xl = x[0][i];
xr = x[1][i];
x[0][i] = xl + xr;
x[1][i] = xl - xr;
mOutL |= FASTABS(x[0][i]);
mOutR |= FASTABS(x[1][i]);
}
mOut[0] |= mOutL;
mOut[1] |= mOutR;
}
/**************************************************************************************
* Function: IntensityProcMPEG1
*
* Description: intensity stereo processing for MPEG1
*
* Inputs: vector x with dequantized samples from left and right channels
* number of non-zero samples in left channel
* valid FrameHeader struct
* two each of ScaleFactorInfoSub, CriticalBandInfo structs (both channels)
* flags indicating midSide on/off, mixedBlock on/off
* guard bit mask (left and right channels)
*
* Outputs: updated sample vector x
* updated guard bit mask
*
* Return: none
*
* Notes: assume at least 1 GB in input
*
* TODO: combine MPEG1/2 into one function (maybe)
* make sure all the mixed-block and IIP logic is right
**************************************************************************************/
void IntensityProcMPEG1(int x[MAX_NCHAN][MAX_NSAMP], int nSamps, FrameHeader *fh, ScaleFactorInfoSub *sfis,
CriticalBandInfo *cbi, int midSideFlag, int mixFlag, int mOut[2])
{
int i=0, j=0, n=0, cb=0, w=0;
int sampsLeft, isf, mOutL, mOutR, xl, xr;
int fl, fr, fls[3], frs[3];
int cbStartL=0, cbStartS=0, cbEndL=0, cbEndS=0;
int *isfTab;
/* NOTE - this works fine for mixed blocks, as long as the switch point starts in the
* short block section (i.e. on or after sample 36 = sfBand->l[8] = 3*sfBand->s[3]
* is this a safe assumption?
* TODO - intensity + mixed not quite right (diff = 11 on he_mode)
* figure out correct implementation (spec ambiguous about when to do short block reorder)
*/
if (cbi[1].cbType == 0) {
/* long block */
cbStartL = cbi[1].cbEndL + 1;
cbEndL = cbi[0].cbEndL + 1;
cbStartS = cbEndS = 0;
i = fh->sfBand->l[cbStartL];
} else if (cbi[1].cbType == 1 || cbi[1].cbType == 2) {
/* short or mixed block */
cbStartS = cbi[1].cbEndSMax + 1;
cbEndS = cbi[0].cbEndSMax + 1;
cbStartL = cbEndL = 0;
i = 3 * fh->sfBand->s[cbStartS];
}
sampsLeft = nSamps - i; /* process to length of left */
isfTab = (int *)ISFMpeg1[midSideFlag];
mOutL = mOutR = 0;
/* long blocks */
for (cb = cbStartL; cb < cbEndL && sampsLeft > 0; cb++) {
isf = sfis->l[cb];
if (isf == 7) {
fl = ISFIIP[midSideFlag][0];
fr = ISFIIP[midSideFlag][1];
} else {
fl = isfTab[isf];
fr = isfTab[6] - isfTab[isf];
}
n = fh->sfBand->l[cb + 1] - fh->sfBand->l[cb];
for (j = 0; j < n && sampsLeft > 0; j++, i++) {
xr = MULSHIFT32(fr, x[0][i]) << 2; x[1][i] = xr; mOutR |= FASTABS(xr);
xl = MULSHIFT32(fl, x[0][i]) << 2; x[0][i] = xl; mOutL |= FASTABS(xl);
sampsLeft--;
}
}
/* short blocks */
for (cb = cbStartS; cb < cbEndS && sampsLeft >= 3; cb++) {
for (w = 0; w < 3; w++) {
isf = sfis->s[cb][w];
if (isf == 7) {
fls[w] = ISFIIP[midSideFlag][0];
frs[w] = ISFIIP[midSideFlag][1];
} else {
fls[w] = isfTab[isf];
frs[w] = isfTab[6] - isfTab[isf];
}
}
n = fh->sfBand->s[cb + 1] - fh->sfBand->s[cb];
for (j = 0; j < n && sampsLeft >= 3; j++, i+=3) {
xr = MULSHIFT32(frs[0], x[0][i+0]) << 2; x[1][i+0] = xr; mOutR |= FASTABS(xr);
xl = MULSHIFT32(fls[0], x[0][i+0]) << 2; x[0][i+0] = xl; mOutL |= FASTABS(xl);
xr = MULSHIFT32(frs[1], x[0][i+1]) << 2; x[1][i+1] = xr; mOutR |= FASTABS(xr);
xl = MULSHIFT32(fls[1], x[0][i+1]) << 2; x[0][i+1] = xl; mOutL |= FASTABS(xl);
xr = MULSHIFT32(frs[2], x[0][i+2]) << 2; x[1][i+2] = xr; mOutR |= FASTABS(xr);
xl = MULSHIFT32(fls[2], x[0][i+2]) << 2; x[0][i+2] = xl; mOutL |= FASTABS(xl);
sampsLeft -= 3;
}
}
mOut[0] = mOutL;
mOut[1] = mOutR;
return;
}
/**************************************************************************************
* Function: IntensityProcMPEG2
*
* Description: intensity stereo processing for MPEG2
*
* Inputs: vector x with dequantized samples from left and right channels
* number of non-zero samples in left channel
* valid FrameHeader struct
* two each of ScaleFactorInfoSub, CriticalBandInfo structs (both channels)
* ScaleFactorJS struct with joint stereo info from UnpackSFMPEG2()
* flags indicating midSide on/off, mixedBlock on/off
* guard bit mask (left and right channels)
*
* Outputs: updated sample vector x
* updated guard bit mask
*
* Return: none
*
* Notes: assume at least 1 GB in input
*
* TODO: combine MPEG1/2 into one function (maybe)
* make sure all the mixed-block and IIP logic is right
* probably redo IIP logic to be simpler
**************************************************************************************/
void IntensityProcMPEG2(int x[MAX_NCHAN][MAX_NSAMP], int nSamps, FrameHeader *fh, ScaleFactorInfoSub *sfis,
CriticalBandInfo *cbi, ScaleFactorJS *sfjs, int midSideFlag, int mixFlag, int mOut[2])
{
int i, j, k, n, r, cb, w;
int fl, fr, mOutL, mOutR, xl, xr;
int sampsLeft;
int isf, sfIdx, tmp, il[23];
int *isfTab;
int cbStartL, cbStartS, cbEndL, cbEndS;
isfTab = (int *)ISFMpeg2[sfjs->intensityScale][midSideFlag];
mOutL = mOutR = 0;
/* fill buffer with illegal intensity positions (depending on slen) */
for (k = r = 0; r < 4; r++) {
tmp = (1 << sfjs->slen[r]) - 1;
for (j = 0; j < sfjs->nr[r]; j++, k++)
il[k] = tmp;
}
if (cbi[1].cbType == 0) {
/* long blocks */
il[21] = il[22] = 1;
cbStartL = cbi[1].cbEndL + 1; /* start at end of right */
cbEndL = cbi[0].cbEndL + 1; /* process to end of left */
i = fh->sfBand->l[cbStartL];
sampsLeft = nSamps - i;
for(cb = cbStartL; cb < cbEndL; cb++) {
sfIdx = sfis->l[cb];
if (sfIdx == il[cb]) {
fl = ISFIIP[midSideFlag][0];
fr = ISFIIP[midSideFlag][1];
} else {
isf = (sfis->l[cb] + 1) >> 1;
fl = isfTab[(sfIdx & 0x01 ? isf : 0)];
fr = isfTab[(sfIdx & 0x01 ? 0 : isf)];
}
n = MIN(fh->sfBand->l[cb + 1] - fh->sfBand->l[cb], sampsLeft);
for(j = 0; j < n; j++, i++) {
xr = MULSHIFT32(fr, x[0][i]) << 2; x[1][i] = xr; mOutR |= FASTABS(xr);
xl = MULSHIFT32(fl, x[0][i]) << 2; x[0][i] = xl; mOutL |= FASTABS(xl);
}
/* early exit once we've used all the non-zero samples */
sampsLeft -= n;
if (sampsLeft == 0)
break;
}
} else {
/* short or mixed blocks */
il[12] = 1;
for(w = 0; w < 3; w++) {
cbStartS = cbi[1].cbEndS[w] + 1; /* start at end of right */
cbEndS = cbi[0].cbEndS[w] + 1; /* process to end of left */
i = 3 * fh->sfBand->s[cbStartS] + w;
/* skip through sample array by 3, so early-exit logic would be more tricky */
for(cb = cbStartS; cb < cbEndS; cb++) {
sfIdx = sfis->s[cb][w];
if (sfIdx == il[cb]) {
fl = ISFIIP[midSideFlag][0];
fr = ISFIIP[midSideFlag][1];
} else {
isf = (sfis->s[cb][w] + 1) >> 1;
fl = isfTab[(sfIdx & 0x01 ? isf : 0)];
fr = isfTab[(sfIdx & 0x01 ? 0 : isf)];
}
n = fh->sfBand->s[cb + 1] - fh->sfBand->s[cb];
for(j = 0; j < n; j++, i+=3) {
xr = MULSHIFT32(fr, x[0][i]) << 2; x[1][i] = xr; mOutR |= FASTABS(xr);
xl = MULSHIFT32(fl, x[0][i]) << 2; x[0][i] = xl; mOutL |= FASTABS(xl);
}
}
}
}
mOut[0] = mOutL;
mOut[1] = mOutR;
return;
}