459 lines
16 KiB
C
Raw Normal View History

/* ***** BEGIN LICENSE BLOCK *****
* Version: RCSL 1.0/RPSL 1.0
*
* Portions Copyright (c) 1995-2002 RealNetworks, Inc. All Rights Reserved.
*
* The contents of this file, and the files included with this file, are
* subject to the current version of the RealNetworks Public Source License
* Version 1.0 (the "RPSL") available at
* http://www.helixcommunity.org/content/rpsl unless you have licensed
* the file under the RealNetworks Community Source License Version 1.0
* (the "RCSL") available at http://www.helixcommunity.org/content/rcsl,
* in which case the RCSL will apply. You may also obtain the license terms
* directly from RealNetworks. You may not use this file except in
* compliance with the RPSL or, if you have a valid RCSL with RealNetworks
* applicable to this file, the RCSL. Please see the applicable RPSL or
* RCSL for the rights, obligations and limitations governing use of the
* contents of the file.
*
* This file is part of the Helix DNA Technology. RealNetworks is the
* developer of the Original Code and owns the copyrights in the portions
* it created.
*
* This file, and the files included with this file, is distributed and made
* available on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER
* EXPRESS OR IMPLIED, AND REALNETWORKS HEREBY DISCLAIMS ALL SUCH WARRANTIES,
* INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY, FITNESS
* FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT.
*
* Technology Compatibility Kit Test Suite(s) Location:
* http://www.helixcommunity.org/content/tck
*
* Contributor(s):
*
* ***** END LICENSE BLOCK ***** */
/**************************************************************************************
* Fixed-point MP3 decoder
* Jon Recker (jrecker@real.com), Ken Cooke (kenc@real.com)
* July 2003
*
* huffman.c - Huffman decoding of transform coefficients
**************************************************************************************/
#include "coder.h"
/* helper macros - see comments in hufftabs.c about the format of the huffman tables */
#define GetMaxbits(x) ((int)( (((unsigned short)(x)) >> 0) & 0x000f))
#define GetHLen(x) ((int)( (((unsigned short)(x)) >> 12) & 0x000f))
#define GetCWY(x) ((int)( (((unsigned short)(x)) >> 8) & 0x000f))
#define GetCWX(x) ((int)( (((unsigned short)(x)) >> 4) & 0x000f))
#define GetSignBits(x) ((int)( (((unsigned short)(x)) >> 0) & 0x000f))
#define GetHLenQ(x) ((int)( (((unsigned char)(x)) >> 4) & 0x0f))
#define GetCWVQ(x) ((int)( (((unsigned char)(x)) >> 3) & 0x01))
#define GetCWWQ(x) ((int)( (((unsigned char)(x)) >> 2) & 0x01))
#define GetCWXQ(x) ((int)( (((unsigned char)(x)) >> 1) & 0x01))
#define GetCWYQ(x) ((int)( (((unsigned char)(x)) >> 0) & 0x01))
/* apply sign of s to the positive number x (save in MSB, will do two's complement in dequant) */
#define ApplySign(x, s) { (x) |= ((s) & 0x80000000); }
/**************************************************************************************
* Function: DecodeHuffmanPairs
*
* Description: decode 2-way vector Huffman codes in the "bigValues" region of spectrum
*
* Inputs: valid BitStreamInfo struct, pointing to start of pair-wise codes
* pointer to xy buffer to received decoded values
* number of codewords to decode
* index of Huffman table to use
* number of bits remaining in bitstream
*
* Outputs: pairs of decoded coefficients in vwxy
* updated BitStreamInfo struct
*
* Return: number of bits used, or -1 if out of bits
*
* Notes: assumes that nVals is an even number
* si_huff.bit tests every Huffman codeword in every table (though not
* necessarily all linBits outputs for x,y > 15)
**************************************************************************************/
static int DecodeHuffmanPairs(int *xy, int nVals, int tabIdx, int bitsLeft, unsigned char *buf, int bitOffset)
{
int i, x, y;
int cachedBits, padBits, len, startBits, linBits, maxBits, minBits;
HuffTabType tabType;
unsigned short cw, *tBase, *tCurr;
unsigned int cache;
if(nVals <= 0)
return 0;
if (bitsLeft < 0)
return -1;
startBits = bitsLeft;
tBase = (unsigned short *)(huffTable + huffTabOffset[tabIdx]);
linBits = huffTabLookup[tabIdx].linBits;
tabType = huffTabLookup[tabIdx].tabType;
ASSERT(!(nVals & 0x01));
ASSERT(tabIdx < HUFF_PAIRTABS);
ASSERT(tabIdx >= 0);
ASSERT(tabType != invalidTab);
/* initially fill cache with any partial byte */
cache = 0;
cachedBits = (8 - bitOffset) & 0x07;
if (cachedBits)
cache = (unsigned int)(*buf++) << (32 - cachedBits);
bitsLeft -= cachedBits;
if (tabType == noBits) {
/* table 0, no data, x = y = 0 */
for (i = 0; i < nVals; i+=2) {
xy[i+0] = 0;
xy[i+1] = 0;
}
return 0;
} else if (tabType == oneShot) {
/* single lookup, no escapes */
maxBits = GetMaxbits(tBase[0]);
tBase++;
padBits = 0;
while (nVals > 0) {
/* refill cache - assumes cachedBits <= 16 */
if (bitsLeft >= 16) {
/* load 2 new bytes into left-justified cache */
cache |= (unsigned int)(*buf++) << (24 - cachedBits);
cache |= (unsigned int)(*buf++) << (16 - cachedBits);
cachedBits += 16;
bitsLeft -= 16;
} else {
/* last time through, pad cache with zeros and drain cache */
if (cachedBits + bitsLeft <= 0) return -1;
if (bitsLeft > 0) cache |= (unsigned int)(*buf++) << (24 - cachedBits);
if (bitsLeft > 8) cache |= (unsigned int)(*buf++) << (16 - cachedBits);
cachedBits += bitsLeft;
bitsLeft = 0;
cache &= (signed int)0x80000000 >> (cachedBits - 1);
padBits = 11;
cachedBits += padBits; /* okay if this is > 32 (0's automatically shifted in from right) */
}
/* largest maxBits = 9, plus 2 for sign bits, so make sure cache has at least 11 bits */
while (nVals > 0 && cachedBits >= 11 ) {
cw = tBase[cache >> (32 - maxBits)];
len = GetHLen(cw);
cachedBits -= len;
cache <<= len;
x = GetCWX(cw); if (x) {ApplySign(x, cache); cache <<= 1; cachedBits--;}
y = GetCWY(cw); if (y) {ApplySign(y, cache); cache <<= 1; cachedBits--;}
/* ran out of bits - should never have consumed padBits */
if (cachedBits < padBits)
return -1;
*xy++ = x;
*xy++ = y;
nVals -= 2;
}
}
bitsLeft += (cachedBits - padBits);
return (startBits - bitsLeft);
} else if (tabType == loopLinbits || tabType == loopNoLinbits) {
tCurr = tBase;
padBits = 0;
while (nVals > 0) {
/* refill cache - assumes cachedBits <= 16 */
if (bitsLeft >= 16) {
/* load 2 new bytes into left-justified cache */
cache |= (unsigned int)(*buf++) << (24 - cachedBits);
cache |= (unsigned int)(*buf++) << (16 - cachedBits);
cachedBits += 16;
bitsLeft -= 16;
} else {
/* last time through, pad cache with zeros and drain cache */
if (cachedBits + bitsLeft <= 0) return -1;
if (bitsLeft > 0) cache |= (unsigned int)(*buf++) << (24 - cachedBits);
if (bitsLeft > 8) cache |= (unsigned int)(*buf++) << (16 - cachedBits);
cachedBits += bitsLeft;
bitsLeft = 0;
cache &= (signed int)0x80000000 >> (cachedBits - 1);
padBits = 11;
cachedBits += padBits; /* okay if this is > 32 (0's automatically shifted in from right) */
}
/* largest maxBits = 9, plus 2 for sign bits, so make sure cache has at least 11 bits */
while (nVals > 0 && cachedBits >= 11 ) {
maxBits = GetMaxbits(tCurr[0]);
cw = tCurr[(cache >> (32 - maxBits)) + 1];
len = GetHLen(cw);
if (!len) {
cachedBits -= maxBits;
cache <<= maxBits;
tCurr += cw;
continue;
}
cachedBits -= len;
cache <<= len;
x = GetCWX(cw);
y = GetCWY(cw);
if (x == 15 && tabType == loopLinbits) {
minBits = linBits + 1 + (y ? 1 : 0);
if (cachedBits + bitsLeft < minBits)
return -1;
while (cachedBits < minBits) {
cache |= (unsigned int)(*buf++) << (24 - cachedBits);
cachedBits += 8;
bitsLeft -= 8;
}
if (bitsLeft < 0) {
cachedBits += bitsLeft;
bitsLeft = 0;
cache &= (signed int)0x80000000 >> (cachedBits - 1);
}
x += (int)(cache >> (32 - linBits));
cachedBits -= linBits;
cache <<= linBits;
}
if (x) {ApplySign(x, cache); cache <<= 1; cachedBits--;}
if (y == 15 && tabType == loopLinbits) {
minBits = linBits + 1;
if (cachedBits + bitsLeft < minBits)
return -1;
while (cachedBits < minBits) {
cache |= (unsigned int)(*buf++) << (24 - cachedBits);
cachedBits += 8;
bitsLeft -= 8;
}
if (bitsLeft < 0) {
cachedBits += bitsLeft;
bitsLeft = 0;
cache &= (signed int)0x80000000 >> (cachedBits - 1);
}
y += (int)(cache >> (32 - linBits));
cachedBits -= linBits;
cache <<= linBits;
}
if (y) {ApplySign(y, cache); cache <<= 1; cachedBits--;}
/* ran out of bits - should never have consumed padBits */
if (cachedBits < padBits)
return -1;
*xy++ = x;
*xy++ = y;
nVals -= 2;
tCurr = tBase;
}
}
bitsLeft += (cachedBits - padBits);
return (startBits - bitsLeft);
}
/* error in bitstream - trying to access unused Huffman table */
return -1;
}
/**************************************************************************************
* Function: DecodeHuffmanQuads
*
* Description: decode 4-way vector Huffman codes in the "count1" region of spectrum
*
* Inputs: valid BitStreamInfo struct, pointing to start of quadword codes
* pointer to vwxy buffer to received decoded values
* maximum number of codewords to decode
* index of quadword table (0 = table A, 1 = table B)
* number of bits remaining in bitstream
*
* Outputs: quadruples of decoded coefficients in vwxy
* updated BitStreamInfo struct
*
* Return: index of the first "zero_part" value (index of the first sample
* of the quad word after which all samples are 0)
*
* Notes: si_huff.bit tests every vwxy output in both quad tables
**************************************************************************************/
static int DecodeHuffmanQuads(int *vwxy, int nVals, int tabIdx, int bitsLeft, unsigned char *buf, int bitOffset)
{
int i, v, w, x, y;
int len, maxBits, cachedBits, padBits;
unsigned int cache;
unsigned char cw, *tBase;
if (bitsLeft <= 0)
return 0;
tBase = (unsigned char *)quadTable + quadTabOffset[tabIdx];
maxBits = quadTabMaxBits[tabIdx];
/* initially fill cache with any partial byte */
cache = 0;
cachedBits = (8 - bitOffset) & 0x07;
if (cachedBits)
cache = (unsigned int)(*buf++) << (32 - cachedBits);
bitsLeft -= cachedBits;
i = padBits = 0;
while (i < (nVals - 3)) {
/* refill cache - assumes cachedBits <= 16 */
if (bitsLeft >= 16) {
/* load 2 new bytes into left-justified cache */
cache |= (unsigned int)(*buf++) << (24 - cachedBits);
cache |= (unsigned int)(*buf++) << (16 - cachedBits);
cachedBits += 16;
bitsLeft -= 16;
} else {
/* last time through, pad cache with zeros and drain cache */
if (cachedBits + bitsLeft <= 0) return i;
if (bitsLeft > 0) cache |= (unsigned int)(*buf++) << (24 - cachedBits);
if (bitsLeft > 8) cache |= (unsigned int)(*buf++) << (16 - cachedBits);
cachedBits += bitsLeft;
bitsLeft = 0;
cache &= (signed int)0x80000000 >> (cachedBits - 1);
padBits = 10;
cachedBits += padBits; /* okay if this is > 32 (0's automatically shifted in from right) */
}
/* largest maxBits = 6, plus 4 for sign bits, so make sure cache has at least 10 bits */
while (i < (nVals - 3) && cachedBits >= 10 ) {
cw = tBase[cache >> (32 - maxBits)];
len = GetHLenQ(cw);
cachedBits -= len;
cache <<= len;
v = GetCWVQ(cw); if(v) {ApplySign(v, cache); cache <<= 1; cachedBits--;}
w = GetCWWQ(cw); if(w) {ApplySign(w, cache); cache <<= 1; cachedBits--;}
x = GetCWXQ(cw); if(x) {ApplySign(x, cache); cache <<= 1; cachedBits--;}
y = GetCWYQ(cw); if(y) {ApplySign(y, cache); cache <<= 1; cachedBits--;}
/* ran out of bits - okay (means we're done) */
if (cachedBits < padBits)
return i;
*vwxy++ = v;
*vwxy++ = w;
*vwxy++ = x;
*vwxy++ = y;
i += 4;
}
}
/* decoded max number of quad values */
return i;
}
/**************************************************************************************
* Function: DecodeHuffman
*
* Description: decode one granule, one channel worth of Huffman codes
*
* Inputs: MP3DecInfo structure filled by UnpackFrameHeader(), UnpackSideInfo(),
* and UnpackScaleFactors() (for this granule)
* buffer pointing to start of Huffman data in MP3 frame
* pointer to bit offset (0-7) indicating starting bit in buf[0]
* number of bits in the Huffman data section of the frame
* (could include padding bits)
* index of current granule and channel
*
* Outputs: decoded coefficients in hi->huffDecBuf[ch] (hi pointer in mp3DecInfo)
* updated bitOffset
*
* Return: length (in bytes) of Huffman codes
* bitOffset also returned in parameter (0 = MSB, 7 = LSB of
* byte located at buf + offset)
* -1 if null input pointers, huffBlockBits < 0, or decoder runs
* out of bits prematurely (invalid bitstream)
**************************************************************************************/
int DecodeHuffman(MP3DecInfo *mp3DecInfo, unsigned char *buf, int *bitOffset, int huffBlockBits, int gr, int ch)
{
int r1Start, r2Start, rEnd[4]; /* region boundaries */
int i, w, bitsUsed, bitsLeft;
unsigned char *startBuf = buf;
FrameHeader *fh;
SideInfo *si;
SideInfoSub *sis;
ScaleFactorInfo *sfi;
HuffmanInfo *hi;
/* validate pointers */
if (!mp3DecInfo || !mp3DecInfo->FrameHeaderPS || !mp3DecInfo->SideInfoPS || !mp3DecInfo->ScaleFactorInfoPS || !mp3DecInfo->HuffmanInfoPS)
return -1;
fh = ((FrameHeader *)(mp3DecInfo->FrameHeaderPS));
si = ((SideInfo *)(mp3DecInfo->SideInfoPS));
sis = &si->sis[gr][ch];
sfi = ((ScaleFactorInfo *)(mp3DecInfo->ScaleFactorInfoPS));
hi = (HuffmanInfo*)(mp3DecInfo->HuffmanInfoPS);
if (huffBlockBits < 0)
return -1;
/* figure out region boundaries (the first 2*bigVals coefficients divided into 3 regions) */
if (sis->winSwitchFlag && sis->blockType == 2) {
if (sis->mixedBlock == 0) {
r1Start = fh->sfBand->s[(sis->region0Count + 1)/3] * 3;
} else {
if (fh->ver == MPEG1) {
r1Start = fh->sfBand->l[sis->region0Count + 1];
} else {
/* see MPEG2 spec for explanation */
w = fh->sfBand->s[4] - fh->sfBand->s[3];
r1Start = fh->sfBand->l[6] + 2*w;
}
}
r2Start = MAX_NSAMP; /* short blocks don't have region 2 */
} else {
r1Start = fh->sfBand->l[sis->region0Count + 1];
r2Start = fh->sfBand->l[sis->region0Count + 1 + sis->region1Count + 1];
}
/* offset rEnd index by 1 so first region = rEnd[1] - rEnd[0], etc. */
rEnd[3] = MIN(MAX_NSAMP, 2 * sis->nBigvals);
rEnd[2] = MIN(r2Start, rEnd[3]);
rEnd[1] = MIN(r1Start, rEnd[3]);
rEnd[0] = 0;
/* rounds up to first all-zero pair (we don't check last pair for (x,y) == (non-zero, zero)) */
hi->nonZeroBound[ch] = rEnd[3];
/* decode Huffman pairs (rEnd[i] are always even numbers) */
bitsLeft = huffBlockBits;
for (i = 0; i < 3; i++) {
bitsUsed = DecodeHuffmanPairs(hi->huffDecBuf[ch] + rEnd[i], rEnd[i+1] - rEnd[i], sis->tableSelect[i], bitsLeft, buf, *bitOffset);
if (bitsUsed < 0 || bitsUsed > bitsLeft) /* error - overran end of bitstream */
return -1;
/* update bitstream position */
buf += (bitsUsed + *bitOffset) >> 3;
*bitOffset = (bitsUsed + *bitOffset) & 0x07;
bitsLeft -= bitsUsed;
}
/* decode Huffman quads (if any) */
hi->nonZeroBound[ch] += DecodeHuffmanQuads(hi->huffDecBuf[ch] + rEnd[3], MAX_NSAMP - rEnd[3], sis->count1TableSelect, bitsLeft, buf, *bitOffset);
ASSERT(hi->nonZeroBound[ch] <= MAX_NSAMP);
for (i = hi->nonZeroBound[ch]; i < MAX_NSAMP; i++)
hi->huffDecBuf[ch][i] = 0;
/* If bits used for 576 samples < huffBlockBits, then the extras are considered
* to be stuffing bits (throw away, but need to return correct bitstream position)
*/
buf += (bitsLeft + *bitOffset) >> 3;
*bitOffset = (bitsLeft + *bitOffset) & 0x07;
return (buf - startBuf);
}