157 lines
3.0 KiB
C
157 lines
3.0 KiB
C
|
/* atanh.c
|
|||
|
*
|
|||
|
* Inverse hyperbolic tangent
|
|||
|
*
|
|||
|
*
|
|||
|
*
|
|||
|
* SYNOPSIS:
|
|||
|
*
|
|||
|
* double x, y, atanh();
|
|||
|
*
|
|||
|
* y = atanh( x );
|
|||
|
*
|
|||
|
*
|
|||
|
*
|
|||
|
* DESCRIPTION:
|
|||
|
*
|
|||
|
* Returns inverse hyperbolic tangent of argument in the range
|
|||
|
* MINLOG to MAXLOG.
|
|||
|
*
|
|||
|
* If |x| < 0.5, the rational form x + x**3 P(x)/Q(x) is
|
|||
|
* employed. Otherwise,
|
|||
|
* atanh(x) = 0.5 * log( (1+x)/(1-x) ).
|
|||
|
*
|
|||
|
*
|
|||
|
*
|
|||
|
* ACCURACY:
|
|||
|
*
|
|||
|
* Relative error:
|
|||
|
* arithmetic domain # trials peak rms
|
|||
|
* DEC -1,1 50000 2.4e-17 6.4e-18
|
|||
|
* IEEE -1,1 30000 1.9e-16 5.2e-17
|
|||
|
*
|
|||
|
*/
|
|||
|
|
|||
|
/* atanh.c */
|
|||
|
|
|||
|
|
|||
|
/*
|
|||
|
Cephes Math Library Release 2.8: June, 2000
|
|||
|
Copyright (C) 1987, 1995, 2000 by Stephen L. Moshier
|
|||
|
*/
|
|||
|
|
|||
|
#include "mconf.h"
|
|||
|
|
|||
|
#ifdef UNK
|
|||
|
const static double P[] = {
|
|||
|
-8.54074331929669305196E-1,
|
|||
|
1.20426861384072379242E1,
|
|||
|
-4.61252884198732692637E1,
|
|||
|
6.54566728676544377376E1,
|
|||
|
-3.09092539379866942570E1
|
|||
|
};
|
|||
|
const static double Q[] = {
|
|||
|
/* 1.00000000000000000000E0,*/
|
|||
|
-1.95638849376911654834E1,
|
|||
|
1.08938092147140262656E2,
|
|||
|
-2.49839401325893582852E2,
|
|||
|
2.52006675691344555838E2,
|
|||
|
-9.27277618139601130017E1
|
|||
|
};
|
|||
|
#endif
|
|||
|
#ifdef DEC
|
|||
|
static unsigned short P[] = {
|
|||
|
0140132,0122235,0105775,0130300,
|
|||
|
0041100,0127327,0124407,0034722,
|
|||
|
0141470,0100113,0115607,0130535,
|
|||
|
0041602,0164721,0003257,0013673,
|
|||
|
0141367,0043046,0166673,0045750
|
|||
|
};
|
|||
|
static unsigned short Q[] = {
|
|||
|
/*0040200,0000000,0000000,0000000,*/
|
|||
|
0141234,0101326,0015460,0134564,
|
|||
|
0041731,0160115,0116451,0032045,
|
|||
|
0142171,0153343,0000532,0167226,
|
|||
|
0042174,0000665,0077604,0000310,
|
|||
|
0141671,0072235,0031114,0074377
|
|||
|
};
|
|||
|
#endif
|
|||
|
|
|||
|
#ifdef IBMPC
|
|||
|
static unsigned short P[] = {
|
|||
|
0xb618,0xb17f,0x5493,0xbfeb,
|
|||
|
0xe73a,0xf520,0x15da,0x4028,
|
|||
|
0xf62c,0x7370,0x1009,0xc047,
|
|||
|
0xe2f7,0x20d5,0x5d3a,0x4050,
|
|||
|
0x697d,0xddb7,0xe8c4,0xc03e
|
|||
|
};
|
|||
|
static unsigned short Q[] = {
|
|||
|
/*0x0000,0x0000,0x0000,0x3ff0,*/
|
|||
|
0x172f,0xc366,0x905a,0xc033,
|
|||
|
0x2685,0xb3a5,0x3c09,0x405b,
|
|||
|
0x5dd3,0x602b,0x3adc,0xc06f,
|
|||
|
0x8019,0xaff0,0x8036,0x406f,
|
|||
|
0x8f20,0xa649,0x2e93,0xc057
|
|||
|
};
|
|||
|
#endif
|
|||
|
|
|||
|
#ifdef MIEEE
|
|||
|
static unsigned short P[] = {
|
|||
|
0xbfeb,0x5493,0xb17f,0xb618,
|
|||
|
0x4028,0x15da,0xf520,0xe73a,
|
|||
|
0xc047,0x1009,0x7370,0xf62c,
|
|||
|
0x4050,0x5d3a,0x20d5,0xe2f7,
|
|||
|
0xc03e,0xe8c4,0xddb7,0x697d
|
|||
|
};
|
|||
|
static unsigned short Q[] = {
|
|||
|
0xc033,0x905a,0xc366,0x172f,
|
|||
|
0x405b,0x3c09,0xb3a5,0x2685,
|
|||
|
0xc06f,0x3adc,0x602b,0x5dd3,
|
|||
|
0x406f,0x8036,0xaff0,0x8019,
|
|||
|
0xc057,0x2e93,0xa649,0x8f20
|
|||
|
};
|
|||
|
#endif
|
|||
|
|
|||
|
#ifdef ANSIPROT
|
|||
|
extern double fabs ( double );
|
|||
|
extern double log ( double x );
|
|||
|
extern double polevl ( double x, void *P, int N );
|
|||
|
extern double p1evl ( double x, void *P, int N );
|
|||
|
#else
|
|||
|
double fabs(), log(), polevl(), p1evl();
|
|||
|
#endif
|
|||
|
extern double INFINITY, NAN;
|
|||
|
|
|||
|
double atanh(x)
|
|||
|
double x;
|
|||
|
{
|
|||
|
double s, z;
|
|||
|
|
|||
|
#ifdef MINUSZERO
|
|||
|
if( x == 0.0 )
|
|||
|
return(x);
|
|||
|
#endif
|
|||
|
z = fabs(x);
|
|||
|
if( z >= 1.0 )
|
|||
|
{
|
|||
|
if( x == 1.0 )
|
|||
|
return( INFINITY );
|
|||
|
if( x == -1.0 )
|
|||
|
return( -INFINITY );
|
|||
|
mtherr( "atanh", DOMAIN );
|
|||
|
return( NAN );
|
|||
|
}
|
|||
|
|
|||
|
if( z < 1.0e-7 )
|
|||
|
return(x);
|
|||
|
|
|||
|
if( z < 0.5 )
|
|||
|
{
|
|||
|
z = x * x;
|
|||
|
s = x + x * z * (polevl(z, P, 4) / p1evl(z, Q, 5));
|
|||
|
return(s);
|
|||
|
}
|
|||
|
|
|||
|
return( 0.5 * log((1.0+x)/(1.0-x)) );
|
|||
|
}
|