rtt-f030/bsp/stm32f429_armfly/drivers/drv_sdio_sd.c

362 lines
10 KiB
C
Raw Normal View History

2017-09-12 17:57:14 +08:00
#include "drv_sdio_sd.h"
#include "string.h"
#include <rtthread.h>
#define SD_TIMEOUT (1000000U)
#define SECTOR_SIZE 512
//#define SD_DMA_MODE 1
#define DEBUG
#ifdef RT_USING_DFS
#include <dfs_fs.h>
static SD_HandleTypeDef hsd;
static HAL_SD_CardInfoTypedef sdcard_info;
static rt_uint32_t _sdcard_buffer[SECTOR_SIZE / sizeof(rt_uint32_t)];
static struct rt_device sdcard_device;
static struct rt_semaphore sd_lock;
#ifdef SD_DMA_MODE
static DMA_HandleTypeDef SDTxDMAHandler,SDRxDMAHandler;
#endif
#ifdef DEBUG
#define DEBUG_PRINTF(...) rt_kprintf(__VA_ARGS__)
#else
#define DEBUG_PRINTF(...)
#endif
rt_err_t sdio_sd_init(void)
{
hsd.Instance = SDIO;
hsd.Init.ClockEdge = SDIO_CLOCK_EDGE_RISING;
hsd.Init.ClockBypass = SDIO_CLOCK_BYPASS_DISABLE;
hsd.Init.ClockPowerSave = SDIO_CLOCK_POWER_SAVE_DISABLE;
hsd.Init.BusWide = SDIO_BUS_WIDE_1B;
hsd.Init.HardwareFlowControl = SDIO_HARDWARE_FLOW_CONTROL_DISABLE;
hsd.Init.ClockDiv = SDIO_INIT_CLK_DIV;
if (HAL_SD_Init(&hsd, &sdcard_info) != HAL_OK)
return RT_ERROR;
if(HAL_SD_WideBusOperation_Config(&hsd, SDIO_BUS_WIDE_4B) != HAL_OK)
return RT_ERROR;
return RT_EOK;
}
void HAL_SD_MspInit(SD_HandleTypeDef *hsd)
{
DMA_HandleTypeDef TxDMAHandler,RxDMAHandler;
GPIO_InitTypeDef GPIO_Initure;
__HAL_RCC_SDIO_CLK_ENABLE();
#if (SD_DMA_MODE == 1)
__HAL_RCC_DMA2_CLK_ENABLE();
#endif
__HAL_RCC_GPIOC_CLK_ENABLE();
__HAL_RCC_GPIOD_CLK_ENABLE();
//PC8,9,10,11,12
GPIO_Initure.Pin = GPIO_PIN_8 | GPIO_PIN_9 | GPIO_PIN_10 | GPIO_PIN_11 | GPIO_PIN_12;
GPIO_Initure.Mode = GPIO_MODE_AF_PP;
GPIO_Initure.Pull = GPIO_PULLUP;
GPIO_Initure.Speed = GPIO_SPEED_HIGH;
GPIO_Initure.Alternate = GPIO_AF12_SDIO;
HAL_GPIO_Init(GPIOC, &GPIO_Initure);
//PD2
GPIO_Initure.Pin = GPIO_PIN_2;
HAL_GPIO_Init(GPIOD,&GPIO_Initure);
#if (SD_DMA_MODE==1) //ʹ<><CAB9>DMAģʽ
HAL_NVIC_SetPriority(SDMMC1_IRQn,2,0); //<2F><><EFBFBD><EFBFBD>SDMMC1<43>жϣ<D0B6><CFA3><EFBFBD>ռ<EFBFBD><D5BC><EFBFBD>ȼ<EFBFBD>2<EFBFBD><32><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>ȼ<EFBFBD>0
HAL_NVIC_EnableIRQ(SDMMC1_IRQn); //ʹ<><CAB9>SDMMC1<43>ж<EFBFBD>
//<2F><><EFBFBD>÷<EFBFBD><C3B7><EFBFBD>DMA
SDRxDMAHandler.Instance = DMA2_Stream3;
SDRxDMAHandler.Init.Channel = DMA_CHANNEL_4;
SDRxDMAHandler.Init.Direction = DMA_PERIPH_TO_MEMORY;
SDRxDMAHandler.Init.PeriphInc = DMA_PINC_DISABLE;
SDRxDMAHandler.Init.MemInc = DMA_MINC_ENABLE;
SDRxDMAHandler.Init.PeriphDataAlignment = DMA_PDATAALIGN_WORD;
SDRxDMAHandler.Init.MemDataAlignment = DMA_MDATAALIGN_WORD;
SDRxDMAHandler.Init.Mode = DMA_PFCTRL;
SDRxDMAHandler.Init.Priority = DMA_PRIORITY_VERY_HIGH;
SDRxDMAHandler.Init.FIFOMode = DMA_FIFOMODE_ENABLE;
SDRxDMAHandler.Init.FIFOThreshold = DMA_FIFO_THRESHOLD_FULL;
SDRxDMAHandler.Init.MemBurst = DMA_MBURST_INC4;
SDRxDMAHandler.Init.PeriphBurst = DMA_PBURST_INC4;
__HAL_LINKDMA(hsd, hdmarx, SDRxDMAHandler); //<2F><><EFBFBD><EFBFBD><EFBFBD><EFBFBD>DMA<4D><41>SD<53><44><EFBFBD>ķ<EFBFBD><C4B7><EFBFBD>DMA<4D><41><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>
HAL_DMA_DeInit(&SDRxDMAHandler);
HAL_DMA_Init(&SDRxDMAHandler); //<2F><>ʼ<EFBFBD><CABC><EFBFBD><EFBFBD><EFBFBD><EFBFBD>DMA
//<2F><><EFBFBD>ý<EFBFBD><C3BD><EFBFBD>DMA
SDTxDMAHandler.Instance = DMA2_Stream6;
SDTxDMAHandler.Init.Channel = DMA_CHANNEL_4;
SDTxDMAHandler.Init.Direction = DMA_MEMORY_TO_PERIPH;
SDTxDMAHandler.Init.PeriphInc = DMA_PINC_DISABLE;
SDTxDMAHandler.Init.MemInc = DMA_MINC_ENABLE;
SDTxDMAHandler.Init.PeriphDataAlignment = DMA_PDATAALIGN_WORD;
SDTxDMAHandler.Init.MemDataAlignment = DMA_MDATAALIGN_WORD;
SDTxDMAHandler.Init.Mode = DMA_PFCTRL;
SDTxDMAHandler.Init.Priority = DMA_PRIORITY_VERY_HIGH;
SDTxDMAHandler.Init.FIFOMode = DMA_FIFOMODE_ENABLE;
SDTxDMAHandler.Init.FIFOThreshold = DMA_FIFO_THRESHOLD_FULL;
SDTxDMAHandler.Init.MemBurst = DMA_MBURST_INC4;
SDTxDMAHandler.Init.PeriphBurst = DMA_PBURST_INC4;
__HAL_LINKDMA(hsd, hdmatx, SDTxDMAHandler);//<2F><><EFBFBD><EFBFBD><EFBFBD><EFBFBD>DMA<4D><41>SD<53><44><EFBFBD>ķ<EFBFBD><C4B7><EFBFBD>DMA<4D><41><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>
HAL_DMA_DeInit(&SDTxDMAHandler);
HAL_DMA_Init(&SDTxDMAHandler); //<2F><>ʼ<EFBFBD><CABC><EFBFBD><EFBFBD><EFBFBD><EFBFBD>DMA
HAL_NVIC_SetPriority(DMA2_Stream3_IRQn, 3, 0); //<2F><><EFBFBD><EFBFBD>DMA<4D>ж<EFBFBD><D0B6><EFBFBD><EFBFBD>ȼ<EFBFBD>
HAL_NVIC_EnableIRQ(DMA2_Stream3_IRQn);
HAL_NVIC_SetPriority(DMA2_Stream6_IRQn, 3, 0); //<2F><><EFBFBD><EFBFBD>DMA<4D>ж<EFBFBD><D0B6><EFBFBD><EFBFBD>ȼ<EFBFBD>
HAL_NVIC_EnableIRQ(DMA2_Stream6_IRQn);
#endif
}
rt_uint8_t SD_GetCardInfo(HAL_SD_CardInfoTypedef *cardinfo)
{
return HAL_SD_Get_CardInfo(&hsd, cardinfo);
}
#if (SD_DMA_MODE==1)
HAL_SD_ErrorTypedef SD_ReadBlocks(void* buf,uint64_t sector ,uint32_t cnt)
{
HAL_SD_ErrorTypedef err;
err = HAL_SD_ReadBlocks_DMA(&hsd, buf, sector, SECTOR_SIZE, cnt);
if(err != SD_OK)
{
DEBUG_PRINTF("err: %d\n", err);
return err;
}
return HAL_SD_CheckReadOperation(&hsd, (uint32_t)SD_TIMEOUT);
}
HAL_SD_ErrorTypedef SD_WriteBlocks(const void* buf,uint64_t sector,uint32_t cnt)
{
HAL_SD_ErrorTypedef err;
err = HAL_SD_WriteBlocks_DMA(&hsd, (uint32_t *)buf, sector, SECTOR_SIZE, cnt);
if(err != SD_OK)
{
DEBUG_PRINTF("err: %d\n", err);
return err;
}
return HAL_SD_CheckWriteOperation(&hsd, (uint32_t)SD_TIMEOUT);
}
void SDMMC1_IRQHandler(void)
{
HAL_SD_IRQHandler(&hsd);
}
void DMA2_Stream6_IRQHandler(void)
{
HAL_DMA_IRQHandler(hsd.hdmatx);
}
void DMA2_Stream3_IRQHandler(void)
{
HAL_DMA_IRQHandler(hsd.hdmarx);
}
#else
HAL_SD_ErrorTypedef SD_ReadBlocks(void* buf, uint64_t sector, uint32_t cnt)
{
return HAL_SD_ReadBlocks(&hsd, (uint32_t * )buf, sector, SECTOR_SIZE, cnt);
}
HAL_SD_ErrorTypedef SD_WriteBlocks(const void* buf, uint64_t sector, uint32_t cnt)
{
return HAL_SD_WriteBlocks(&hsd, (uint32_t * )buf, sector, SECTOR_SIZE, cnt);
}
#endif
static rt_err_t rt_sdcard_init(rt_device_t dev)
{
if (rt_sem_init(&sd_lock, "sdlock", 1, RT_IPC_FLAG_FIFO) != RT_EOK)
{
DEBUG_PRINTF("init sd lock semaphore failed\n");
return RT_ERROR;
}
else
{
DEBUG_PRINTF("SD Card init OK\n");
return RT_EOK;
}
}
static rt_err_t rt_sdcard_open(rt_device_t dev, rt_uint16_t oflag)
{
return RT_EOK;
}
static rt_err_t rt_sdcard_close(rt_device_t dev)
{
return RT_EOK;
}
static rt_size_t rt_sdcard_read(rt_device_t dev, rt_off_t pos, void* buffer, rt_size_t size)
{
HAL_SD_ErrorTypedef status = SD_OK;
rt_uint32_t retry;
rt_sem_take(&sd_lock, RT_WAITING_FOREVER);
retry = 3;
while(retry)
{
/* read all sectors */
if ((rt_uint32_t)buffer % 4 != 0)
{
rt_uint32_t index;
/* which is not alignment with 4 or chip SRAM */
for (index = 0; index < size; index++)
{
status = SD_ReadBlocks(buffer, (uint64_t)pos * SECTOR_SIZE, 1);
if (status != HAL_OK)
break;
/* copy to the buffer */
rt_memcpy(((rt_uint8_t*)buffer + index * SECTOR_SIZE), _sdcard_buffer, SECTOR_SIZE);
}
}
else
{
status = SD_ReadBlocks(buffer, (uint64_t)pos*SECTOR_SIZE, size);
}
if (status == HAL_OK)
break;
retry --;
}
rt_sem_release(&sd_lock);
if (status == HAL_OK)
{
return size;
}
else
{
DEBUG_PRINTF("rt_sdcard_read, ");
DEBUG_PRINTF("dev: %08X, pos: %d, ", (uint32_t)dev, pos);
DEBUG_PRINTF("buffer: 0x%08X, size: %d\n", buffer, size);
DEBUG_PRINTF("read failed: status/%d, buffer 0x%08x\n", status, buffer);
return 0;
}
}
static rt_size_t rt_sdcard_write (rt_device_t dev, rt_off_t pos, const void* buffer, rt_size_t size)
{
HAL_SD_ErrorTypedef status = SD_OK;
rt_uint32_t retry;
static rt_uint32_t count = 0;
RT_ASSERT(((uint32_t)buffer & 0x3) == 0x0); //align to 4 bytes;
rt_sem_take(&sd_lock, RT_WAITING_FOREVER);
retry = 3;
while(retry)
{
/* read all sectors */
if ((rt_uint32_t)buffer % 4 != 0)
{
rt_uint32_t index;
/* which is not alignment with 4 or chip SRAM */
for (index = 0; index < size; index++)
{
/* copy to the buffer */
rt_memcpy(((rt_uint8_t*)buffer + index * SECTOR_SIZE), _sdcard_buffer, SECTOR_SIZE);
status = SD_WriteBlocks(buffer, (uint64_t)pos * SECTOR_SIZE, 1);
if (status != HAL_OK)
break;
}
}
else
{
status = SD_WriteBlocks(buffer, (uint64_t)pos*SECTOR_SIZE, size);
}
if (status == HAL_OK)
break;
retry --;
}
rt_sem_release(&sd_lock);
if (status == HAL_OK)
{
return size;
}
else
{
DEBUG_PRINTF("rt_sdcard_write: %d, ", count);
DEBUG_PRINTF("dev: %08X, pos: %d, ", (uint32_t)dev, pos);
DEBUG_PRINTF("buffer: 0x%08X, size: %d\n", (uint32_t)buffer, size);
DEBUG_PRINTF("write failed: status/%d, buffer 0x%08x\n", status, buffer);
return 0;
}
}
static rt_err_t rt_sdcard_control(rt_device_t dev, rt_uint8_t cmd, void *args)
{
RT_ASSERT(dev != RT_NULL);
if (cmd == RT_DEVICE_CTRL_BLK_GETGEOME)
{
struct rt_device_blk_geometry *geometry = (struct rt_device_blk_geometry *)args;
if (geometry == RT_NULL)
return -RT_ERROR;
geometry->bytes_per_sector = sdcard_info.CardBlockSize;
geometry->block_size = sdcard_info.CardBlockSize;
geometry->sector_count = sdcard_info.CardCapacity / sdcard_info.CardBlockSize;
}
return RT_EOK;
}
static int rt_hw_sdcard_init(void)
{
if (sdio_sd_init() != RT_EOK)
{
DEBUG_PRINTF("sdcard init failed\n");
return RT_ERROR;
}
/* register sdcard device */
sdcard_device.type = RT_Device_Class_Block;
sdcard_device.init = rt_sdcard_init;
sdcard_device.open = rt_sdcard_open;
sdcard_device.close = rt_sdcard_close;
sdcard_device.read = rt_sdcard_read;
sdcard_device.write = rt_sdcard_write;
sdcard_device.control = rt_sdcard_control;
rt_device_register(&sdcard_device, "sd0",
RT_DEVICE_FLAG_RDWR | RT_DEVICE_FLAG_REMOVABLE | RT_DEVICE_FLAG_STANDALONE);
return RT_EOK;
}
INIT_BOARD_EXPORT(rt_hw_sdcard_init);
#endif