rtt-f030/bsp/samd21/sam_d2x_asflib/sam0/drivers/tc/tc.h

1792 lines
55 KiB
C
Raw Normal View History

2017-08-30 12:18:28 +08:00
/**
* \file
*
* \brief SAM TC - Timer Counter Driver
*
* Copyright (C) 2013-2016 Atmel Corporation. All rights reserved.
*
* \asf_license_start
*
* \page License
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
*
* 1. Redistributions of source code must retain the above copyright notice,
* this list of conditions and the following disclaimer.
*
* 2. Redistributions in binary form must reproduce the above copyright notice,
* this list of conditions and the following disclaimer in the documentation
* and/or other materials provided with the distribution.
*
* 3. The name of Atmel may not be used to endorse or promote products derived
* from this software without specific prior written permission.
*
* 4. This software may only be redistributed and used in connection with an
* Atmel microcontroller product.
*
* THIS SOFTWARE IS PROVIDED BY ATMEL "AS IS" AND ANY EXPRESS OR IMPLIED
* WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT ARE
* EXPRESSLY AND SPECIFICALLY DISCLAIMED. IN NO EVENT SHALL ATMEL BE LIABLE FOR
* ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
* STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
* ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*
* \asf_license_stop
*
*/
/*
* Support and FAQ: visit <a href="http://www.atmel.com/design-support/">Atmel Support</a>
*/
#ifndef TC_H_INCLUDED
#define TC_H_INCLUDED
/**
* \defgroup asfdoc_sam0_tc_group SAM Timer/Counter (TC) Driver
*
* This driver for Atmel&reg; | SMART ARM&reg;-based microcontrollers provides an interface for the configuration
* and management of the timer modules within the device, for waveform
* generation and timing operations. The following driver API modes are covered
* by this manual:
*
* - Polled APIs
* \if TC_CALLBACK_MODE
* - Callback APIs
* \endif
*
*
* The following peripheral is used by this module:
* - TC (Timer/Counter)
*
* The following devices can use this module:
* - Atmel | SMART SAM D20/D21
* - Atmel | SMART SAM R21
* - Atmel | SMART SAM D09/D10/D11
* - Atmel | SMART SAM L21/L22
* - Atmel | SMART SAM DA1
* - Atmel | SMART SAM C20/C21
* - Atmel | SMART SAM HA1
*
* The outline of this documentation is as follows:
* - \ref asfdoc_sam0_tc_prerequisites
* - \ref asfdoc_sam0_tc_module_overview
* - \ref asfdoc_sam0_tc_special_considerations
* - \ref asfdoc_sam0_tc_extra_info
* - \ref asfdoc_sam0_tc_examples
* - \ref asfdoc_sam0_tc_api_overview
*
*
* \section asfdoc_sam0_tc_prerequisites Prerequisites
*
* There are no prerequisites for this module.
*
*
* \section asfdoc_sam0_tc_module_overview Module Overview
*
* The Timer/Counter (TC) module provides a set of timing and counting related
* functionality, such as the generation of periodic waveforms, the capturing
* of a periodic waveform's frequency/duty cycle, and software timekeeping for
* periodic operations. TC modules can be configured to use an 8-, 16-, or
* 32-bit counter size.
*
* This TC module for the SAM is capable of the following functions:
*
* - Generation of PWM signals
* - Generation of timestamps for events
* - General time counting
* - Waveform period capture
* - Waveform frequency capture
*
* \ref asfdoc_sam0_tc_block_diagram "The diagram below" shows the overview
* of the TC module design.
*
* \anchor asfdoc_sam0_tc_block_diagram
* \image html overview.svg "Basic Overview of the TC Module"
*
*
* \subsection asfdoc_sam0_tc_features Driver Feature Macro Definition
* <table>
* <tr>
* <th>Driver Feature Macro</th>
* <th>Supported devices</th>
* </tr>
* <tr>
* <td>FEATURE_TC_DOUBLE_BUFFERED</td>
* <td>SAM L21/L22/C20/C21</td>
* </tr>
* <tr>
* <td>FEATURE_TC_SYNCBUSY_SCHEME_VERSION_2</td>
* <td>SAM L21/L22/C20/C21</td>
* </tr>
* <tr>
* <td>FEATURE_TC_STAMP_PW_CAPTURE</td>
* <td>SAM L21/L22/C20/C21</td>
* </tr>
* <tr>
* <td>FEATURE_TC_READ_SYNC</td>
* <td>SAM L21/L22/C20/C21</td>
* </tr>
* <tr>
* <td>FEATURE_TC_IO_CAPTURE</td>
* <td>SAM L21/L22/C20/C21</td>
* </tr>
* <tr>
* <td>FEATURE_TC_GENERATE_DMA_TRIGGER</td>
* <td>SAM L21/L22</td>
* </tr>
* </table>
* \note The specific features are only available in the driver when the
* selected device supports those features.
*
* \subsection asfdoc_sam0_tc_module_overview_func_desc Functional Description
* Independent of the configured counter size, each TC module can be set up
* in one of two different modes; capture and compare.
*
* In capture mode, the counter value is stored when a configurable event
* occurs. This mode can be used to generate timestamps used in event capture,
* or it can be used for the measurement of a periodic input signal's
* frequency/duty cycle.
*
* In compare mode, the counter value is compared against one or more of the
* configured channel compare values. When the counter value coincides with a
* compare value an action can be taken automatically by the module, such as
* generating an output event or toggling a pin when used for frequency or
* Pulse Width Modulation (PWM) signal generation.
*
* \note The connection of events between modules requires the use of the
* \ref asfdoc_sam0_events_group "SAM Event System Driver (EVENTS)"
* to route output event of one module to the input event of another.
* For more information on event routing, refer to the event driver
* documentation.
*
* \subsection asfdoc_sam0_tc_module_overview_tc_size Timer/Counter Size
* Each timer module can be configured in one of three different counter
* sizes; 8-, 16-, and 32-bit. The size of the counter determines the maximum
* value it can count to before an overflow occurs and the count is reset back
* to zero. \ref asfdoc_sam0_tc_count_size_vs_top "The table below" shows the
* maximum values for each of the possible counter sizes.
*
* \anchor asfdoc_sam0_tc_count_size_vs_top
* <table>
* <caption>Timer Counter Sizes and Their Maximum Count Values</caption>
* <tr>
* <th>Counter size</th>
* <th>Max. (hexadecimal)</th>
* <th>Max. (decimal)</th>
* </tr>
* <tr>
* <td>8-bit</td>
* <td>0xFF</td>
* <td>255</td>
* </tr>
* <tr>
* <td>16-bit</td>
* <td>0xFFFF</td>
* <td>65,535</td>
* </tr>
* <tr>
* <td>32-bit</td>
* <td>0xFFFFFFFF</td>
* <td>4,294,967,295</td>
* </tr>
* </table>
*
* When using the counter in 16- or 32-bit count mode, Compare Capture
* register 0 (CC0) is used to store the period value when running in PWM
* generation match mode.
*
* When using 32-bit counter size, two 16-bit counters are chained together
* in a cascade formation. Except in SAM D09/D10/D11. Even numbered TC modules
* (e.g. TC0, TC2) can be configured as 32-bit counters. The odd numbered
* counters will act as slaves to the even numbered masters, and will not
* be reconfigurable until the master timer is disabled. The pairing of timer
* modules for 32-bit mode is shown in \ref asfdoc_sam0_tc_module_ms_pairs
* "the table below".
*
* \anchor asfdoc_sam0_tc_module_ms_pairs
* <table>
* <caption>TC Master and Slave Module Pairings</caption>
* <tr>
* <th>Master TC module</th>
* <th>Slave TC module</th>
* </tr>
* <tr>
* <td>TC0</td>
* <td>TC1</td>
* </tr>
* <tr>
* <td>TC2</td>
* <td>TC3</td>
* </tr>
* <tr>
* <td>...</td>
* <td>...</td>
* </tr>
* <tr>
* <td>TCn-1</td>
* <td>TCn</td>
* </tr>
* </table>
*
* In SAM D09/D10/D11, odd numbered TC modules (e.g. TC1) can be configured as 32-bit
* counters. The even numbered (e.g. TC2) counters will act as slaves to the odd
* numbered masters.
*
* \subsection asfdoc_sam0_tc_module_overview_clock Clock Settings
*
* \subsubsection asfdoc_sam0_tc_module_overview_clock_selection Clock Selection
* Each TC peripheral is clocked asynchronously to the system clock by a GCLK
* (Generic Clock) channel. The GCLK channel connects to any of the GCLK
* generators. The GCLK generators are configured to use one of the available
* clock sources on the system such as internal oscillator, external crystals,
* etc. See the \ref asfdoc_sam0_system_clock_group "Generic Clock driver"
*for
* more information.
*
* \subsubsection asfdoc_sam0_tc_module_overview_clock_prescaler Prescaler
* Each TC module in the SAM has its own individual clock prescaler, which
* can be used to divide the input clock frequency used in the counter. This
* prescaler only scales the clock used to provide clock pulses for the counter
* to count, and does not affect the digital register interface portion of
* the module, thus the timer registers will synchronize to the raw GCLK
* frequency input to the module.
*
* As a result of this, when selecting a GCLK frequency and timer prescaler
* value the user application should consider both the timer resolution
* required and the synchronization frequency, to avoid lengthy
* synchronization times of the module if a very slow GCLK frequency is fed
* into the TC module. It is preferable to use a higher module GCLK frequency
* as the input to the timer, and prescale this down as much as possible to
* obtain a suitable counter frequency in latency-sensitive applications.
*
* \subsubsection asfdoc_sam0_tc_module_overview_clock_reloading Reloading
* Timer modules also contain a configurable reload action, used when a
* re-trigger event occurs. Examples of a re-trigger event are the counter
* reaching the maximum value when counting up, or when an event from the event
* system tells the counter to re-trigger. The reload action determines if the
* prescaler should be reset, and when this should happen. The counter will
* always be reloaded with the value it is set to start counting from. The user
* can choose between three different reload actions, described in
* \ref asfdoc_sam0_tc_module_reload_act "the table below".
*
* \anchor asfdoc_sam0_tc_module_reload_act
* <table>
* <caption>TC Module Reload Actions</caption>
* <tr>
* <th>Reload action</th>
* <th>Description</th>
* </tr>
* <tr>
* <td>\ref TC_RELOAD_ACTION_GCLK </td>
* <td>Reload TC counter value on next GCLK cycle. Leave prescaler
* as-is.</td>
* </tr>
* <tr>
* <td>\ref TC_RELOAD_ACTION_PRESC </td>
* <td>Reloads TC counter value on next prescaler clock. Leave prescaler
* as-is.</td>
* </tr>
* <tr>
* <td> \ref TC_RELOAD_ACTION_RESYNC </td>
* <td>Reload TC counter value on next GCLK cycle. Clear prescaler to
* zero.</td>
* </tr>
* </table>
*
* The reload action to use will depend on the specific application being
* implemented. One example is when an external trigger for a reload occurs; if
* the TC uses the prescaler, the counter in the prescaler should not have a
* value between zero and the division factor. The TC counter and the counter
* in the prescaler should both start at zero. When the counter is set to
* re-trigger when it reaches the maximum value on the other hand, this is not the
* right option to use. In such a case it would be better if the prescaler is
* left unaltered when the re-trigger happens, letting the counter reset on the
* next GCLK cycle.
*
* \subsection asfdoc_sam0_tc_module_overview_compare_match Compare Match Operations
* In compare match operation, Compare/Capture registers are used in comparison
* with the counter value. When the timer's count value matches the value of a
* compare channel, a user defined action can be taken.
*
* \subsubsection asfdoc_sam0_tc_module_overview_compare_match_timer Basic Timer
*
* A Basic Timer is a simple application where compare match operations are used
* to determine when a specific period has elapsed. In Basic Timer operations,
* one or more values in the module's Compare/Capture registers are used to
* specify the time (as a number of prescaled GCLK cycles) when an action should
* be taken by the microcontroller. This can be an Interrupt Service Routine
* (ISR), event generator via the event system, or a software flag that is
* polled via the user application.
*
* \subsubsection asfdoc_sam0_tc_module_overview_compare_match_wg Waveform Generation
*
* Waveform generation enables the TC module to generate square waves, or if
* combined with an external passive low-pass filter; analog waveforms.
*
* \subsubsection asfdoc_sam0_tc_module_overview_compare_match_wg_pwm Waveform Generation - PWM
*
* Pulse width modulation is a form of waveform generation and a signalling
* technique that can be useful in many situations. When PWM mode is used,
* a digital pulse train with a configurable frequency and duty cycle can be
* generated by the TC module and output to a GPIO pin of the device.
*
* Often PWM is used to communicate a control or information parameter to an
* external circuit or component. Differing impedances of the source generator
* and sink receiver circuits are less of an issue when using PWM compared to
* using an analog voltage value, as noise will not generally affect the
* signal's integrity to a meaningful extent.
*
* \ref asfdoc_sam0_tc_module_pwm_normal_diag "The figure below" illustrates
* operations and different states of the counter and its output when running
* the counter in PWM normal mode. As can be seen, the TOP value is unchanged
* and is set to MAX. The compare match value is changed at several points to
* illustrate the resulting waveform output changes. The PWM output is set to
* normal (i.e. non-inverted) output mode.
*
* \anchor asfdoc_sam0_tc_module_pwm_normal_diag
* \image html pwm_normal_ex.svg "Example of PWM in Normal Mode, and Different Counter Operations"
*
*
* In \ref asfdoc_sam0_tc_module_pwm_match_diag "the figure below", the
* counter is set to generate PWM in Match mode. The PWM output is inverted via
* the appropriate configuration option in the TC driver configuration
* structure. In this example, the counter value is changed once, but the
* compare match value is kept unchanged. As can be seen, it is possible to
* change the TOP value when running in PWM match mode.
*
* \anchor asfdoc_sam0_tc_module_pwm_match_diag
* \image html pwm_match_ex.svg "Example of PWM in Match Mode and Different Counter Operations"
*
* \subsubsection asfdoc_sam0_tc_module_overview_compare_match_wg_freq Waveform Generation - Frequency
*
* Frequency Generation mode is in many ways identical to PWM
* generation. However, in Frequency Generation a toggle only occurs
* on the output when a match on a capture channels occurs. When the
* match is made, the timer value is reset, resulting in a variable
* frequency square wave with a fixed 50% duty cycle.
*
* \subsubsection asfdoc_sam0_tc_module_overview_compare_match_capt Capture Operations
*
* In capture operations, any event from the event system or a pin change can
* trigger a capture of the counter value. This captured counter value can be
* used as a timestamp for the event, or it can be used in frequency and pulse
* width capture.
*
* \subsubsection asfdoc_sam0_tc_module_overview_compare_match_capt_event_capture Capture Operations - Event
*
* Event capture is a simple use of the capture functionality,
* designed to create timestamps for specific events. When the TC
* module's input capture pin is externally toggled, the current timer
* count value is copied into a buffered register which can then be
* read out by the user application.
*
* Note that when performing any capture operation, there is a risk that the
* counter reaches its top value (MAX) when counting up, or the bottom value
* (zero) when counting down, before the capture event occurs. This can distort
* the result, making event timestamps to appear shorter than reality; the
* user application should check for timer overflow when reading a capture
* result in order to detect this situation and perform an appropriate
* adjustment.
*
* Before checking for a new capture, \ref TC_STATUS_COUNT_OVERFLOW
* should be checked. The response to an overflow error is left to the user
* application, however it may be necessary to clear both the capture overflow
* flag and the capture flag upon each capture reading.
*
* \subsubsection asfdoc_sam0_tc_module_overview_compare_match_capt_pwc Capture Operations - Pulse Width
*
* Pulse Width Capture mode makes it possible to measure the pulse width and
* period of PWM signals. This mode uses two capture channels of the counter.
* This means that the counter module used for Pulse Width Capture can not be
* used for any other purpose. There are two modes for pulse width capture;
* Pulse Width Period (PWP) and Period Pulse Width (PPW). In PWP mode, capture
* channel 0 is used for storing the pulse width and capture channel 1 stores
* the observed period. While in PPW mode, the roles of the two capture channels
* are reversed.
*
* As in the above example it is necessary to poll on interrupt flags to see
* if a new capture has happened and check that a capture overflow error has
* not occurred.
*
* \subsection asfdoc_sam0_tc_module_overview_oneshot One-shot Mode
*
* TC modules can be configured into a one-shot mode. When configured in this
* manner, starting the timer will cause it to count until the next overflow
* or underflow condition before automatically halting, waiting to be manually
* triggered by the user application software or an event signal from the event
* system.
*
* \subsubsection asfdoc_sam0_tc_module_overview_inversion Wave Generation Output Inversion
*
* The output of the wave generation can be inverted by hardware if desired,
* resulting in the logically inverted value being output to the configured
* device GPIO pin.
*
*
* \section asfdoc_sam0_tc_special_considerations Special Considerations
*
* The number of capture compare registers in each TC module is dependent on
* the specific SAM device being used, and in some cases the counter size.
*
* The maximum amount of capture compare registers available in any SAM
* device is two when running in 32-bit mode and four in 8- and 16-bit modes.
*
*
* \section asfdoc_sam0_tc_extra_info Extra Information
*
* For extra information, see \ref asfdoc_sam0_tc_extra. This includes:
* - \ref asfdoc_sam0_tc_extra_acronyms
* - \ref asfdoc_sam0_tc_extra_dependencies
* - \ref asfdoc_sam0_tc_extra_errata
* - \ref asfdoc_sam0_tc_extra_history
*
*
* \section asfdoc_sam0_tc_examples Examples
*
* For a list of examples related to this driver, see
* \ref asfdoc_sam0_tc_exqsg.
*
* \section asfdoc_sam0_tc_api_overview API Overview
* @{
*/
#include <compiler.h>
#include <clock.h>
#include <gclk.h>
#include <pinmux.h>
/**
* Define port features set according to different device family
* @{
*/
#if (SAML21) || (SAML22) || (SAMC20) || (SAMC21) || (SAMR30) || defined(__DOXYGEN__)
/** TC double buffered. */
# define FEATURE_TC_DOUBLE_BUFFERED
/** SYNCBUSY scheme version 2. */
# define FEATURE_TC_SYNCBUSY_SCHEME_VERSION_2
/** TC time stamp capture and pulse width capture. */
# define FEATURE_TC_STAMP_PW_CAPTURE
/** Read synchronization of COUNT. */
# define FEATURE_TC_READ_SYNC
/** I/O pin edge capture. */
# define FEATURE_TC_IO_CAPTURE
#endif
#if (SAML21XXXB) || (SAMR30) || defined(__DOXYGEN__)
/** Generate Direct Memory Access (DMA) triggers. */
# define FEATURE_TC_GENERATE_DMA_TRIGGER
#endif
/*@}*/
#if !defined(__DOXYGEN__)
#if SAMD20 || SAML21 || SAML22 || SAMC20 || SAMC21 || SAMR30
# define TC_INSTANCE_OFFSET 0
#endif
#if SAMD21 || SAMR21 || SAMDA1 || SAMHA1
# define TC_INSTANCE_OFFSET 3
#endif
#if SAMD09 || SAMD10 || SAMD11
# define TC_INSTANCE_OFFSET 1
#endif
#if SAMD20
# define NUMBER_OF_COMPARE_CAPTURE_CHANNELS TC0_CC8_NUM
#elif SAML21 || SAML22 || SAMC20 || SAMC21 || SAMR30
# define NUMBER_OF_COMPARE_CAPTURE_CHANNELS TC0_CC_NUM
#elif SAMD09 || SAMD10 || SAMD11
# define NUMBER_OF_COMPARE_CAPTURE_CHANNELS TC1_CC8_NUM
#else
# define NUMBER_OF_COMPARE_CAPTURE_CHANNELS TC3_CC8_NUM
/* Same number for 8-, 16- or 32-bit TC and all TC instances */
#endif
/** TC Instance MAX ID Number. */
#if SAMD20E || SAMD20G || SAMD21G || SAMD21E || SAMR21
# if SAMD21GXXL || SAM_PART_IS_DEFINED(SAMD21G17AU) || SAM_PART_IS_DEFINED(SAMD21G18AU)
# define TC_INST_MAX_ID 7
# else
# define TC_INST_MAX_ID 5
# endif
#elif SAML21 || SAMC20 || SAMC21 || SAMR30
# define TC_INST_MAX_ID 4
#elif SAML22
# define TC_INST_MAX_ID 3
#elif SAMD09 || SAMD10 || SAMD11
# define TC_INST_MAX_ID 2
#else
# define TC_INST_MAX_ID 7
#endif
#endif
#if TC_ASYNC == true
# include <system_interrupt.h>
#endif
#ifdef __cplusplus
extern "C" {
#endif
#if TC_ASYNC == true
/** Enum for the possible callback types for the TC module. */
enum tc_callback {
/** Callback for TC overflow */
TC_CALLBACK_OVERFLOW,
/** Callback for capture overflow error */
TC_CALLBACK_ERROR,
/** Callback for capture compare channel 0 */
TC_CALLBACK_CC_CHANNEL0,
/** Callback for capture compare channel 1 */
TC_CALLBACK_CC_CHANNEL1,
# if !defined(__DOXYGEN__)
/** Number of available callbacks */
TC_CALLBACK_N,
# endif
};
#endif
/**
* \name Module Status Flags
*
* TC status flags, returned by \ref tc_get_status() and cleared by
* \ref tc_clear_status().
*
* @{
*/
/** Timer channel 0 has matched against its compare value, or has captured a
* new value.
*/
#define TC_STATUS_CHANNEL_0_MATCH (1UL << 0)
/** Timer channel 1 has matched against its compare value, or has captured a
* new value.
*/
#define TC_STATUS_CHANNEL_1_MATCH (1UL << 1)
/** Timer register synchronization has completed, and the synchronized count
* value may be read.
*/
#define TC_STATUS_SYNC_READY (1UL << 2)
/** A new value was captured before the previous value was read, resulting in
* lost data.
*/
#define TC_STATUS_CAPTURE_OVERFLOW (1UL << 3)
/** The timer count value has overflowed from its maximum value to its minimum
* when counting upward, or from its minimum value to its maximum when
* counting downward.
*/
#define TC_STATUS_COUNT_OVERFLOW (1UL << 4)
#ifdef FEATURE_TC_DOUBLE_BUFFERED
/** Channel 0 compare or capture buffer valid. */
#define TC_STATUS_CHN0_BUFFER_VALID (1UL << 5)
/** Channel 1 compare or capture buffer valid. */
#define TC_STATUS_CHN1_BUFFER_VALID (1UL << 6)
/** Period buffer valid. */
#define TC_STATUS_PERIOD_BUFFER_VALID (1UL << 7)
#endif
/** @} */
/**
* \brief Index of the compare capture channels.
*
* This enum is used to specify which capture/compare channel to do
* operations on.
*/
enum tc_compare_capture_channel {
/** Index of compare capture channel 0 */
TC_COMPARE_CAPTURE_CHANNEL_0,
/** Index of compare capture channel 1 */
TC_COMPARE_CAPTURE_CHANNEL_1,
};
/**
* \name TC Wave Generation Mode
*
* @{
*/
#if SAML21 || SAML22 || SAMC20 || SAMC21 || SAMR30
/** TC wave generation mode: normal frequency. */
#define TC_WAVE_GENERATION_NORMAL_FREQ_MODE TC_WAVE_WAVEGEN_NFRQ
/** TC wave generation mode: match frequency. */
#define TC_WAVE_GENERATION_MATCH_FREQ_MODE TC_WAVE_WAVEGEN_MFRQ
/** TC wave generation mode: normal PWM. */
#define TC_WAVE_GENERATION_NORMAL_PWM_MODE TC_WAVE_WAVEGEN_NPWM
/** TC wave generation mode: match PWM. */
#define TC_WAVE_GENERATION_MATCH_PWM_MODE TC_WAVE_WAVEGEN_MPWM
#else
/** TC wave generation mode: normal frequency. */
#define TC_WAVE_GENERATION_NORMAL_FREQ_MODE TC_CTRLA_WAVEGEN_NFRQ
/** TC wave generation mode: match frequency. */
#define TC_WAVE_GENERATION_MATCH_FREQ_MODE TC_CTRLA_WAVEGEN_MFRQ
/** TC wave generation mode: normal PWM. */
#define TC_WAVE_GENERATION_NORMAL_PWM_MODE TC_CTRLA_WAVEGEN_NPWM
/** TC wave generation mode: match PWM. */
#define TC_WAVE_GENERATION_MATCH_PWM_MODE TC_CTRLA_WAVEGEN_MPWM
#endif
/** @} */
/**
* \brief TC wave generation mode enum.
*
* This enum is used to select which mode to run the wave
* generation in.
*
*/
enum tc_wave_generation {
/** Top is maximum, except in 8-bit counter size where it is the PER
* register
*/
TC_WAVE_GENERATION_NORMAL_FREQ = TC_WAVE_GENERATION_NORMAL_FREQ_MODE,
/** Top is CC0, except in 8-bit counter size where it is the PER
* register
*/
TC_WAVE_GENERATION_MATCH_FREQ = TC_WAVE_GENERATION_MATCH_FREQ_MODE,
/** Top is maximum, except in 8-bit counter size where it is the PER
* register
*/
TC_WAVE_GENERATION_NORMAL_PWM = TC_WAVE_GENERATION_NORMAL_PWM_MODE,
/** Top is CC0, except in 8-bit counter size where it is the PER
* register
*/
TC_WAVE_GENERATION_MATCH_PWM = TC_WAVE_GENERATION_MATCH_PWM_MODE,
};
/**
* \brief Specifies if the counter is 8-, 16-, or 32-bit.
*
* This enum specifies the maximum value it is possible to count to.
*/
enum tc_counter_size {
/** The counter's maximum value is 0xFF, the period register is
* available to be used as top value
*/
TC_COUNTER_SIZE_8BIT = TC_CTRLA_MODE_COUNT8,
/** The counter's maximum value is 0xFFFF. There is no separate
* period register, to modify top one of the capture compare
* registers has to be used. This limits the amount of
* available channels.
*/
TC_COUNTER_SIZE_16BIT = TC_CTRLA_MODE_COUNT16,
/** The counter's maximum value is 0xFFFFFFFF. There is no separate
* period register, to modify top one of the capture compare
* registers has to be used. This limits the amount of
* available channels.
*/
TC_COUNTER_SIZE_32BIT = TC_CTRLA_MODE_COUNT32,
};
/**
* \brief TC Counter reload action enum.
*
* This enum specify how the counter and prescaler should reload.
*/
enum tc_reload_action {
/** The counter is reloaded/reset on the next GCLK and starts
* counting on the prescaler clock
*/
TC_RELOAD_ACTION_GCLK = TC_CTRLA_PRESCSYNC_GCLK,
/** The counter is reloaded/reset on the next prescaler clock
*/
TC_RELOAD_ACTION_PRESC = TC_CTRLA_PRESCSYNC_PRESC,
/** The counter is reloaded/reset on the next GCLK, and the
* prescaler is restarted as well
*/
TC_RELOAD_ACTION_RESYNC = TC_CTRLA_PRESCSYNC_RESYNC,
};
/**
* \brief TC clock prescaler values.
*
* This enum is used to choose the clock prescaler
* configuration. The prescaler divides the clock frequency of the TC
* module to make the counter count slower.
*/
enum tc_clock_prescaler {
/** Divide clock by 1 */
TC_CLOCK_PRESCALER_DIV1 = TC_CTRLA_PRESCALER(0),
/** Divide clock by 2 */
TC_CLOCK_PRESCALER_DIV2 = TC_CTRLA_PRESCALER(1),
/** Divide clock by 4 */
TC_CLOCK_PRESCALER_DIV4 = TC_CTRLA_PRESCALER(2),
/** Divide clock by 8 */
TC_CLOCK_PRESCALER_DIV8 = TC_CTRLA_PRESCALER(3),
/** Divide clock by 16 */
TC_CLOCK_PRESCALER_DIV16 = TC_CTRLA_PRESCALER(4),
/** Divide clock by 64 */
TC_CLOCK_PRESCALER_DIV64 = TC_CTRLA_PRESCALER(5),
/** Divide clock by 256 */
TC_CLOCK_PRESCALER_DIV256 = TC_CTRLA_PRESCALER(6),
/** Divide clock by 1024 */
TC_CLOCK_PRESCALER_DIV1024 = TC_CTRLA_PRESCALER(7),
};
/**
* \brief TC module count direction.
*
* Timer/Counter count direction.
*/
enum tc_count_direction {
/** Timer should count upward from zero to MAX */
TC_COUNT_DIRECTION_UP,
/** Timer should count downward to zero from MAX */
TC_COUNT_DIRECTION_DOWN,
};
/**
* \name Waveform Inversion Mode
*
* @{
*/
#if SAML21 || SAML22 || SAMC20 || SAMC21 || SAMR30
/** Waveform inversion CC0 mode. */
#define TC_WAVEFORM_INVERT_CC0_MODE TC_DRVCTRL_INVEN(1)
/** Waveform inversion CC1 mode. */
#define TC_WAVEFORM_INVERT_CC1_MODE TC_DRVCTRL_INVEN(2)
#else
/** Waveform inversion CC0 mode. */
#define TC_WAVEFORM_INVERT_CC0_MODE TC_CTRLC_INVEN(1)
/** Waveform inversion CC1 mode. */
#define TC_WAVEFORM_INVERT_CC1_MODE TC_CTRLC_INVEN(2)
#endif
/**
* \brief Waveform inversion mode.
*
* Output waveform inversion mode.
*/
enum tc_waveform_invert_output {
/** No inversion of the waveform output */
TC_WAVEFORM_INVERT_OUTPUT_NONE = 0,
/** Invert output from compare channel 0 */
TC_WAVEFORM_INVERT_OUTPUT_CHANNEL_0 = TC_WAVEFORM_INVERT_CC0_MODE,
/** Invert output from compare channel 1 */
TC_WAVEFORM_INVERT_OUTPUT_CHANNEL_1 = TC_WAVEFORM_INVERT_CC1_MODE,
};
/**
* \brief Action to perform when the TC module is triggered by an event.
*
* Event action to perform when the module is triggered by an event.
*/
enum tc_event_action {
/** No event action */
TC_EVENT_ACTION_OFF = TC_EVCTRL_EVACT_OFF,
/** Re-trigger on event */
TC_EVENT_ACTION_RETRIGGER = TC_EVCTRL_EVACT_RETRIGGER,
/** Increment counter on event */
TC_EVENT_ACTION_INCREMENT_COUNTER = TC_EVCTRL_EVACT_COUNT,
/** Start counter on event */
TC_EVENT_ACTION_START = TC_EVCTRL_EVACT_START,
/** Store period in capture register 0, pulse width in capture
* register 1
*/
TC_EVENT_ACTION_PPW = TC_EVCTRL_EVACT_PPW,
/** Store pulse width in capture register 0, period in capture
* register 1
*/
TC_EVENT_ACTION_PWP = TC_EVCTRL_EVACT_PWP,
#ifdef FEATURE_TC_STAMP_PW_CAPTURE
/** Time stamp capture */
TC_EVENT_ACTION_STAMP = TC_EVCTRL_EVACT_STAMP,
/** Pulse width capture */
TC_EVENT_ACTION_PW = TC_EVCTRL_EVACT_PW,
#endif
};
/**
* \brief TC event enable/disable structure.
*
* Event flags for the \ref tc_enable_events() and \ref tc_disable_events().
*/
struct tc_events {
/** Generate an output event on a compare channel match */
bool generate_event_on_compare_channel
[NUMBER_OF_COMPARE_CAPTURE_CHANNELS];
/** Generate an output event on counter overflow */
bool generate_event_on_overflow;
/** Perform the configured event action when an incoming event is signalled */
bool on_event_perform_action;
/** Specifies if the input event source is inverted, when used in PWP or
* PPW event action modes
*/
bool invert_event_input;
/** Specifies which event to trigger if an event is triggered */
enum tc_event_action event_action;
};
/**
* \brief Configuration struct for TC module in 8-bit size counter mode.
*/
struct tc_8bit_config {
/** Initial timer count value */
uint8_t value;
/** Where to count to or from depending on the direction on the counter */
uint8_t period;
/** Value to be used for compare match on each channel */
uint8_t compare_capture_channel[NUMBER_OF_COMPARE_CAPTURE_CHANNELS];
};
/**
* \brief Configuration struct for TC module in 16-bit size counter mode.
*/
struct tc_16bit_config {
/** Initial timer count value */
uint16_t value;
/** Value to be used for compare match on each channel */
uint16_t compare_capture_channel[NUMBER_OF_COMPARE_CAPTURE_CHANNELS];
};
/**
* \brief Configuration struct for TC module in 32-bit size counter mode.
*/
struct tc_32bit_config {
/** Initial timer count value */
uint32_t value;
/** Value to be used for compare match on each channel */
uint32_t compare_capture_channel[NUMBER_OF_COMPARE_CAPTURE_CHANNELS];
};
/**
* \brief Configuration struct for TC module in 32-bit size counter mode.
*/
struct tc_pwm_channel {
/** When \c true, PWM output for the given channel is enabled */
bool enabled;
/** Specifies pin output for each channel */
uint32_t pin_out;
/** Specifies Multiplexer (MUX) setting for each output channel pin */
uint32_t pin_mux;
};
/**
* \brief TC configuration structure.
*
* Configuration struct for a TC instance. This structure should be
* initialized by the \ref tc_get_config_defaults function before being
* modified by the user application.
*/
struct tc_config {
/** GCLK generator used to clock the peripheral */
enum gclk_generator clock_source;
/** When \c true the module is enabled during standby */
bool run_in_standby;
#if (SAML21) || (SAML22) || (SAMC20) || (SAMC21) || (SAMR30)
/** Run on demand */
bool on_demand;
#endif
/** Specifies either 8-, 16-, or 32-bit counter size */
enum tc_counter_size counter_size;
/** Specifies the prescaler value for GCLK_TC */
enum tc_clock_prescaler clock_prescaler;
/** Specifies which waveform generation mode to use */
enum tc_wave_generation wave_generation;
/** Specifies the reload or reset time of the counter and prescaler
* resynchronization on a re-trigger event for the TC
*/
enum tc_reload_action reload_action;
/** Specifies which channel(s) to invert the waveform on.
For SAM L21/L22/C20/C21, it's also used to invert I/O input pin. */
uint8_t waveform_invert_output;
/** Specifies which channel(s) to enable channel capture
* operation on
*/
bool enable_capture_on_channel[NUMBER_OF_COMPARE_CAPTURE_CHANNELS];
#ifdef FEATURE_TC_IO_CAPTURE
/** Specifies which channel(s) to enable I/O capture
* operation on
*/
bool enable_capture_on_IO[NUMBER_OF_COMPARE_CAPTURE_CHANNELS];
#endif
/** When \c true, one-shot will stop the TC on next hardware or software
* re-trigger event or overflow/underflow
*/
bool oneshot;
/** Specifies the direction for the TC to count */
enum tc_count_direction count_direction;
/** Specifies the PWM channel for TC */
struct tc_pwm_channel pwm_channel[NUMBER_OF_COMPARE_CAPTURE_CHANNELS];
/** Access the different counter size settings through this configuration member. */
union {
/** Struct for 8-bit specific timer configuration */
struct tc_8bit_config counter_8_bit;
/** Struct for 16-bit specific timer configuration */
struct tc_16bit_config counter_16_bit;
/** Struct for 32-bit specific timer configuration */
struct tc_32bit_config counter_32_bit;
};
#ifdef FEATURE_TC_DOUBLE_BUFFERED
/** Set to \c true to enable double buffering write. When enabled any write
* through \ref tc_set_top_value(), \ref tc_set_compare_value() and
* will direct to the buffer register as buffered
* value, and the buffered value will be committed to effective register
* on UPDATE condition, if update is not locked.
*/
bool double_buffering_enabled;
#endif
};
#if TC_ASYNC == true
/** Forward Declaration for the device instance. */
struct tc_module;
/** Type of the callback functions. */
typedef void (*tc_callback_t)(struct tc_module *const module);
#endif
/**
* \brief TC software device instance structure.
*
* TC software instance structure, used to retain software state information
* of an associated hardware module instance.
*
* \note The fields of this structure should not be altered by the user
* application; they are reserved for module-internal use only.
*/
struct tc_module {
#if !defined(__DOXYGEN__)
/** Hardware module pointer of the associated Timer/Counter peripheral */
Tc *hw;
/** Size of the initialized Timer/Counter module configuration */
enum tc_counter_size counter_size;
# if TC_ASYNC == true
/** Array of callbacks */
tc_callback_t callback[TC_CALLBACK_N];
/** Bit mask for callbacks registered */
uint8_t register_callback_mask;
/** Bit mask for callbacks enabled */
uint8_t enable_callback_mask;
# endif
#ifdef FEATURE_TC_DOUBLE_BUFFERED
/** Set to \c true to enable double buffering write */
bool double_buffering_enabled;
#endif
#endif
};
#if !defined(__DOXYGEN__)
uint8_t _tc_get_inst_index(
Tc *const hw);
#endif
/**
* \name Driver Initialization and Configuration
* @{
*/
/**
* \brief Determines if the hardware module(s) are currently synchronizing to
* the bus.
*
* Checks to see if the underlying hardware peripheral module(s) are currently
* synchronizing across multiple clock domains to the hardware bus. This
* function can be used to delay further operations on a module until such time
* that it is ready, to prevent blocking delays for synchronization in the
* user application.
*
* \param[in] module_inst Pointer to the software module instance struct
*
* \return Synchronization status of the underlying hardware module(s).
*
* \retval false If the module has completed synchronization
* \retval true If the module synchronization is ongoing
*/
static inline bool tc_is_syncing(
const struct tc_module *const module_inst)
{
/* Sanity check arguments */
Assert(module_inst);
Assert(module_inst->hw);
/* Get a pointer to the module's hardware instance */
TcCount8 *const tc_module = &(module_inst->hw->COUNT8);
#if (SAML21) || (SAML22) || (SAMC20) || (SAMC21) || (SAMR30)
return (tc_module->SYNCBUSY.reg);
#else
return (tc_module->STATUS.reg & TC_STATUS_SYNCBUSY);
#endif
}
/**
* \brief Initializes config with predefined default values.
*
* This function will initialize a given TC configuration structure to
* a set of known default values. This function should be called on
* any new instance of the configuration structures before being
* modified by the user application.
*
* The default configuration is as follows:
* \li GCLK generator 0 (GCLK main) clock source
* \li 16-bit counter size on the counter
* \li No prescaler
* \li Normal frequency wave generation
* \li GCLK reload action
* \li Don't run in standby
* \li Don't run on demand for SAM L21/L22/C20/C21
* \li No inversion of waveform output
* \li No capture enabled
* \li No I/O capture enabled for SAM L21/L22/C20/C21
* \li No event input enabled
* \li Count upward
* \li Don't perform one-shot operations
* \li No event action
* \li No channel 0 PWM output
* \li No channel 1 PWM output
* \li Counter starts on 0
* \li Capture compare channel 0 set to 0
* \li Capture compare channel 1 set to 0
* \li No PWM pin output enabled
* \li Pin and MUX configuration not set
* \li Double buffer disabled (if have this feature)
*
* \param[out] config Pointer to a TC module configuration structure to set
*/
static inline void tc_get_config_defaults(
struct tc_config *const config)
{
/* Sanity check arguments */
Assert(config);
/* Write default config to config struct */
config->clock_source = GCLK_GENERATOR_0;
config->counter_size = TC_COUNTER_SIZE_16BIT;
config->clock_prescaler = TC_CLOCK_PRESCALER_DIV1;
config->wave_generation = TC_WAVE_GENERATION_NORMAL_FREQ;
config->reload_action = TC_RELOAD_ACTION_GCLK;
config->run_in_standby = false;
#if (SAML21) || (SAML22) || (SAMC20) || (SAMC21) || (SAMR30)
config->on_demand = false;
#endif
config->waveform_invert_output = TC_WAVEFORM_INVERT_OUTPUT_NONE;
config->enable_capture_on_channel[TC_COMPARE_CAPTURE_CHANNEL_0] = false;
config->enable_capture_on_channel[TC_COMPARE_CAPTURE_CHANNEL_1] = false;
#ifdef FEATURE_TC_IO_CAPTURE
config->enable_capture_on_IO[TC_COMPARE_CAPTURE_CHANNEL_0] = false;
config->enable_capture_on_IO[TC_COMPARE_CAPTURE_CHANNEL_1] = false;
#endif
config->count_direction = TC_COUNT_DIRECTION_UP;
config->oneshot = false;
config->pwm_channel[TC_COMPARE_CAPTURE_CHANNEL_0].enabled = false;
config->pwm_channel[TC_COMPARE_CAPTURE_CHANNEL_0].pin_out = 0;
config->pwm_channel[TC_COMPARE_CAPTURE_CHANNEL_0].pin_mux = 0;
config->pwm_channel[TC_COMPARE_CAPTURE_CHANNEL_1].enabled = false;
config->pwm_channel[TC_COMPARE_CAPTURE_CHANNEL_1].pin_out = 0;
config->pwm_channel[TC_COMPARE_CAPTURE_CHANNEL_1].pin_mux = 0;
config->counter_16_bit.value = 0x0000;
config->counter_16_bit.compare_capture_channel\
[TC_COMPARE_CAPTURE_CHANNEL_0] = 0x0000;
config->counter_16_bit.compare_capture_channel\
[TC_COMPARE_CAPTURE_CHANNEL_1] = 0x0000;
#ifdef FEATURE_TC_DOUBLE_BUFFERED
config->double_buffering_enabled = false;
#endif
}
enum status_code tc_init(
struct tc_module *const module_inst,
Tc *const hw,
const struct tc_config *const config);
/** @} */
/**
* \name Event Management
* @{
*/
/**
* \brief Enables a TC module event input or output.
*
* Enables one or more input or output events to or from the TC module.
* See \ref tc_events for a list of events this module supports.
*
* \note Events cannot be altered while the module is enabled.
*
* \param[in] module_inst Pointer to the software module instance struct
* \param[in] events Struct containing flags of events to enable
*/
static inline void tc_enable_events(
struct tc_module *const module_inst,
struct tc_events *const events)
{
/* Sanity check arguments */
Assert(module_inst);
Assert(module_inst->hw);
Assert(events);
Tc *const tc_module = module_inst->hw;
uint32_t event_mask = 0;
if (events->invert_event_input == true) {
event_mask |= TC_EVCTRL_TCINV;
}
if (events->on_event_perform_action == true) {
event_mask |= TC_EVCTRL_TCEI;
}
if (events->generate_event_on_overflow == true) {
event_mask |= TC_EVCTRL_OVFEO;
}
for (uint8_t i = 0; i < NUMBER_OF_COMPARE_CAPTURE_CHANNELS; i++) {
if (events->generate_event_on_compare_channel[i] == true) {
event_mask |= (TC_EVCTRL_MCEO(1) << i);
}
}
tc_module->COUNT8.EVCTRL.reg |= event_mask | events->event_action;
}
/**
* \brief Disables a TC module event input or output.
*
* Disables one or more input or output events to or from the TC module.
* See \ref tc_events for a list of events this module supports.
*
* \note Events cannot be altered while the module is enabled.
*
* \param[in] module_inst Pointer to the software module instance struct
* \param[in] events Struct containing flags of events to disable
*/
static inline void tc_disable_events(
struct tc_module *const module_inst,
struct tc_events *const events)
{
/* Sanity check arguments */
Assert(module_inst);
Assert(module_inst->hw);
Assert(events);
Tc *const tc_module = module_inst->hw;
uint32_t event_mask = 0;
if (events->invert_event_input == true) {
event_mask |= TC_EVCTRL_TCINV;
}
if (events->on_event_perform_action == true) {
event_mask |= TC_EVCTRL_TCEI;
}
if (events->generate_event_on_overflow == true) {
event_mask |= TC_EVCTRL_OVFEO;
}
for (uint8_t i = 0; i < NUMBER_OF_COMPARE_CAPTURE_CHANNELS; i++) {
if (events->generate_event_on_compare_channel[i] == true) {
event_mask |= (TC_EVCTRL_MCEO(1) << i);
}
}
tc_module->COUNT8.EVCTRL.reg &= ~event_mask;
}
/** @} */
/**
* \name Enable/Disable/Reset
* @{
*/
enum status_code tc_reset(
const struct tc_module *const module_inst);
/**
* \brief Enable the TC module.
*
* Enables a TC module that has been previously initialized. The counter will
* start when the counter is enabled.
*
* \note When the counter is configured to re-trigger on an event, the counter
* will not start until the start function is used.
*
* \param[in] module_inst Pointer to the software module instance struct
*/
static inline void tc_enable(
const struct tc_module *const module_inst)
{
/* Sanity check arguments */
Assert(module_inst);
Assert(module_inst->hw);
/* Get a pointer to the module's hardware instance */
TcCount8 *const tc_module = &(module_inst->hw->COUNT8);
while (tc_is_syncing(module_inst)) {
/* Wait for sync */
}
/* Enable TC module */
tc_module->CTRLA.reg |= TC_CTRLA_ENABLE;
}
/**
* \brief Disables the TC module.
*
* Disables a TC module and stops the counter.
*
* \param[in] module_inst Pointer to the software module instance struct
*/
static inline void tc_disable(
const struct tc_module *const module_inst)
{
/* Sanity check arguments */
Assert(module_inst);
Assert(module_inst->hw);
/* Get a pointer to the module's hardware instance */
TcCount8 *const tc_module = &(module_inst->hw->COUNT8);
while (tc_is_syncing(module_inst)) {
/* Wait for sync */
}
/* Disbale interrupt */
tc_module->INTENCLR.reg = TC_INTENCLR_MASK;
/* Clear interrupt flag */
tc_module->INTFLAG.reg = TC_INTFLAG_MASK;
/* Disable TC module */
tc_module->CTRLA.reg &= ~TC_CTRLA_ENABLE;
}
/** @} */
/**
* \name Get/Set Count Value
* @{
*/
uint32_t tc_get_count_value(
const struct tc_module *const module_inst);
enum status_code tc_set_count_value(
const struct tc_module *const module_inst,
const uint32_t count);
/** @} */
/**
* \name Start/Stop Counter
* @{
*/
/**
* \brief Stops the counter.
*
* This function will stop the counter. When the counter is stopped
* the value in the count value is set to 0 if the counter was
* counting up, or maximum if the counter was counting
* down when stopped.
*
* \param[in] module_inst Pointer to the software module instance struct
*/
static inline void tc_stop_counter(
const struct tc_module *const module_inst)
{
/* Sanity check arguments */
Assert(module_inst);
Assert(module_inst->hw);
/* Get a pointer to the module's hardware instance */
TcCount8 *const tc_module = &(module_inst->hw->COUNT8);
while (tc_is_syncing(module_inst)) {
/* Wait for sync */
}
/* Write command to execute */
tc_module->CTRLBSET.reg = TC_CTRLBSET_CMD(TC_CTRLBSET_CMD_STOP_Val);
}
/**
* \brief Starts the counter.
*
* Starts or restarts an initialized TC module's counter.
*
* \param[in] module_inst Pointer to the software module instance struct
*/
static inline void tc_start_counter(
const struct tc_module *const module_inst)
{
/* Sanity check arguments */
Assert(module_inst);
Assert(module_inst->hw);
/* Get a pointer to the module's hardware instance */
TcCount8 *const tc_module = &(module_inst->hw->COUNT8);
while (tc_is_syncing(module_inst)) {
/* Wait for sync */
}
/* Make certain that there are no conflicting commands in the register */
tc_module->CTRLBCLR.reg = TC_CTRLBCLR_CMD_NONE;
while (tc_is_syncing(module_inst)) {
/* Wait for sync */
}
/* Write command to execute */
tc_module->CTRLBSET.reg = TC_CTRLBSET_CMD(TC_CTRLBSET_CMD_RETRIGGER_Val);
}
/** @} */
#ifdef FEATURE_TC_DOUBLE_BUFFERED
/**
* \name Double Buffering
* @{
*/
/**
* \brief Update double buffer.
*
* Update double buffer.
*
* \param[in] module_inst Pointer to the software module instance struct
*/
static inline void tc_update_double_buffer(
const struct tc_module *const module_inst)
{
/* Sanity check arguments */
Assert(module_inst);
Assert(module_inst->hw);
/* Get a pointer to the module's hardware instance */
TcCount8 *const tc_module = &(module_inst->hw->COUNT8);
while (tc_is_syncing(module_inst)) {
/* Wait for sync */
}
/* Make certain that there are no conflicting commands in the register */
tc_module->CTRLBCLR.reg = TC_CTRLBCLR_CMD_NONE;
while (tc_is_syncing(module_inst)) {
/* Wait for sync */
}
/* Write command to execute */
tc_module->CTRLBSET.reg = TC_CTRLBSET_CMD(TC_CTRLBSET_CMD_UPDATE_Val);
}
/** @} */
#endif
#ifdef FEATURE_TC_READ_SYNC
/**
* \name Count Read Synchronization
* @{
*/
/**
* \brief Read synchronization of COUNT.
*
* Read synchronization of COUNT.
*
* \param[in] module_inst Pointer to the software module instance struct
*/
static inline void tc_sync_read_count(
const struct tc_module *const module_inst)
{
/* Sanity check arguments */
Assert(module_inst);
Assert(module_inst->hw);
/* Get a pointer to the module's hardware instance */
TcCount8 *const tc_module = &(module_inst->hw->COUNT8);
while (tc_is_syncing(module_inst)) {
/* Wait for sync */
}
/* Make certain that there are no conflicting commands in the register */
tc_module->CTRLBCLR.reg = TC_CTRLBCLR_CMD_NONE;
while (tc_is_syncing(module_inst)) {
/* Wait for sync */
}
/* Write command to execute */
tc_module->CTRLBSET.reg = TC_CTRLBSET_CMD(TC_CTRLBSET_CMD_READSYNC_Val);
}
/** @} */
#endif
#ifdef FEATURE_TC_GENERATE_DMA_TRIGGER
/**
* \name Generate TC DMA Triggers Command
* @{
*/
/**
* \brief TC DMA Trigger.
*
* TC DMA trigger command.
*
* \param[in] module_inst Pointer to the software module instance struct
*/
static inline void tc_dma_trigger_command(
const struct tc_module *const module_inst)
{
/* Sanity check arguments */
Assert(module_inst);
Assert(module_inst->hw);
/* Get a pointer to the module's hardware instance */
TcCount8 *const tc_module = &(module_inst->hw->COUNT8);
while (tc_is_syncing(module_inst)) {
/* Wait for sync */
}
/* Make certain that there are no conflicting commands in the register */
tc_module->CTRLBCLR.reg = TC_CTRLBCLR_CMD_NONE;
while (tc_is_syncing(module_inst)) {
/* Wait for sync */
}
#if (SAMC20) || (SAMC21) || (SAML22) || (SAML21XXXB) || (SAMR30)
/* Write command to execute */
tc_module->CTRLBSET.reg = TC_CTRLBSET_CMD(TC_CTRLBSET_CMD_DMAOS_Val);
#endif
}
/** @} */
#endif
/**
* \name Get Capture Set Compare
* @{
*/
uint32_t tc_get_capture_value(
const struct tc_module *const module_inst,
const enum tc_compare_capture_channel channel_index);
enum status_code tc_set_compare_value(
const struct tc_module *const module_inst,
const enum tc_compare_capture_channel channel_index,
const uint32_t compare_value);
/** @} */
/**
* \name Set Top Value
* @{
*/
enum status_code tc_set_top_value(
const struct tc_module *const module_inst,
const uint32_t top_value);
/** @} */
/**
* \name Status Management
* @{
*/
/**
* \brief Retrieves the current module status.
*
* Retrieves the status of the module, giving overall state information.
*
* \param[in] module_inst Pointer to the TC software instance struct
*
* \return Bitmask of \c TC_STATUS_* flags.
*
* \retval TC_STATUS_CHANNEL_0_MATCH Timer channel 0 compare/capture match
* \retval TC_STATUS_CHANNEL_1_MATCH Timer channel 1 compare/capture match
* \retval TC_STATUS_SYNC_READY Timer read synchronization has completed
* \retval TC_STATUS_CAPTURE_OVERFLOW Timer capture data has overflowed
* \retval TC_STATUS_COUNT_OVERFLOW Timer count value has overflowed
* \retval TC_STATUS_CHN0_BUFFER_VALID Timer count channel 0 compare/capture buffer valid
* \retval TC_STATUS_CHN1_BUFFER_VALID Timer count channel 1 compare/capture buffer valid
* \retval TC_STATUS_PERIOD_BUFFER_VALID Timer count period buffer valid
*/
static inline uint32_t tc_get_status(
struct tc_module *const module_inst)
{
/* Sanity check arguments */
Assert(module_inst);
Assert(module_inst->hw);
/* Get a pointer to the module's hardware instance */
TcCount8 *const tc_module = &(module_inst->hw->COUNT8);
uint32_t int_flags = tc_module->INTFLAG.reg;
uint32_t status_flags = 0;
/* Check for TC channel 0 match */
if (int_flags & TC_INTFLAG_MC(1)) {
status_flags |= TC_STATUS_CHANNEL_0_MATCH;
}
/* Check for TC channel 1 match */
if (int_flags & TC_INTFLAG_MC(2)) {
status_flags |= TC_STATUS_CHANNEL_1_MATCH;
}
#if !defined(FEATURE_TC_SYNCBUSY_SCHEME_VERSION_2)
/* Check for TC read synchronization ready */
if (int_flags & TC_INTFLAG_SYNCRDY) {
status_flags |= TC_STATUS_SYNC_READY;
}
#endif
/* Check for TC capture overflow */
if (int_flags & TC_INTFLAG_ERR) {
status_flags |= TC_STATUS_CAPTURE_OVERFLOW;
}
/* Check for TC count overflow */
if (int_flags & TC_INTFLAG_OVF) {
status_flags |= TC_STATUS_COUNT_OVERFLOW;
}
#ifdef FEATURE_TC_DOUBLE_BUFFERED
uint8_t double_buffer_valid_status = tc_module->STATUS.reg;
/* Check channel 0 compare or capture buffer valid */
if (double_buffer_valid_status & TC_STATUS_CCBUFV0) {
status_flags |= TC_STATUS_CHN0_BUFFER_VALID;
}
/* Check channel 0 compare or capture buffer valid */
if (double_buffer_valid_status & TC_STATUS_CCBUFV1) {
status_flags |= TC_STATUS_CHN1_BUFFER_VALID;
}
/* Check period buffer valid */
if (double_buffer_valid_status & TC_STATUS_PERBUFV) {
status_flags |= TC_STATUS_PERIOD_BUFFER_VALID;
}
#endif
return status_flags;
}
/**
* \brief Clears a module status flag.
*
* Clears the given status flag of the module.
*
* \param[in] module_inst Pointer to the TC software instance struct
* \param[in] status_flags Bitmask of \c TC_STATUS_* flags to clear
*/
static inline void tc_clear_status(
struct tc_module *const module_inst,
const uint32_t status_flags)
{
/* Sanity check arguments */
Assert(module_inst);
Assert(module_inst->hw);
/* Get a pointer to the module's hardware instance */
TcCount8 *const tc_module = &(module_inst->hw->COUNT8);
uint32_t int_flags = 0;
/* Check for TC channel 0 match */
if (status_flags & TC_STATUS_CHANNEL_0_MATCH) {
int_flags |= TC_INTFLAG_MC(1);
}
/* Check for TC channel 1 match */
if (status_flags & TC_STATUS_CHANNEL_1_MATCH) {
int_flags |= TC_INTFLAG_MC(2);
}
#if !defined(FEATURE_TC_SYNCBUSY_SCHEME_VERSION_2)
/* Check for TC read synchronization ready */
if (status_flags & TC_STATUS_SYNC_READY) {
int_flags |= TC_INTFLAG_SYNCRDY;
}
#endif
/* Check for TC capture overflow */
if (status_flags & TC_STATUS_CAPTURE_OVERFLOW) {
int_flags |= TC_INTFLAG_ERR;
}
/* Check for TC count overflow */
if (status_flags & TC_STATUS_COUNT_OVERFLOW) {
int_flags |= TC_INTFLAG_OVF;
}
/* Clear interrupt flag */
tc_module->INTFLAG.reg = int_flags;
}
/** @} */
/** @} */
#ifdef __cplusplus
}
#endif
/**
* \page asfdoc_sam0_tc_extra Extra Information for TC Driver
*
* \section asfdoc_sam0_tc_extra_acronyms Acronyms
* The table below presents the acronyms used in this module:
*
* <table>
* <tr>
* <th>Acronym</th>
* <th>Description</th>
* </tr>
* <tr>
* <td>DMA</td>
* <td>Direct Memory Access</td>
* </tr>
* <tr>
* <td>TC</td>
* <td>Timer Counter</td>
* </tr>
* <tr>
* <td>PWM</td>
* <td>Pulse Width Modulation</td>
* </tr>
* <tr>
* <td>PWP</td>
* <td>Pulse Width Period</td>
* </tr>
* <tr>
* <td>PPW</td>
* <td>Period Pulse Width</td>
* </tr>
* </table>
*
*
* \section asfdoc_sam0_tc_extra_dependencies Dependencies
* This driver has the following dependencies:
*
* - \ref asfdoc_sam0_system_pinmux_group "System Pin Multiplexer Driver"
*
*
* \section asfdoc_sam0_tc_extra_errata Errata
* There are no errata related to this driver.
*
*
* \section asfdoc_sam0_tc_extra_history Module History
* An overview of the module history is presented in the table below, with
* details on the enhancements and fixes made to the module since its first
* release. The current version of this corresponds to the newest version in
* the table.
*
* <table>
* <tr>
* <th>Changelog</th>
* </tr>
* <tr>
* <td>Added support for SAM D21 and do some modifications as below:
* \li Clean up in the configuration structure, the counter size
* setting specific registers is accessed through the counter_8_bit,
* counter_16_bit, and counter_32_bit structures
* \li All event related settings moved into the tc_event structure </td>
* </tr>
* <tr>
* <td>Added automatic digital clock interface enable for the slave TC
* module when a timer is initialized in 32-bit mode</td>
* </tr>
* <tr>
* <td>Initial release</td>
* </tr>
* </table>
*/
/**
* \page asfdoc_sam0_tc_exqsg Examples for TC Driver
*
* This is a list of the available Quick Start guides (QSGs) and example
* applications for \ref asfdoc_sam0_tc_group. QSGs are simple examples with
* step-by-step instructions to configure and use this driver in a selection of
* use cases. Note that QSGs can be compiled as a standalone application or be
* added to the user application.
*
* - \subpage asfdoc_sam0_tc_basic_use_case
* - \subpage asfdoc_sam0_tc_macth_freq_use_case
* \if TC_CALLBACK_MODE
* - \subpage asfdoc_sam0_tc_timer_use_case
* - \subpage asfdoc_sam0_tc_callback_use_case
* \endif
* - \subpage asfdoc_sam0_tc_dma_use_case
*
* \page asfdoc_sam0_tc_document_revision_history Document Revision History
*
* <table>
* <tr>
* <th>Doc. Rev.</td>
* <th>Date</td>
* <th>Comments</td>
* </tr>
* <tr>
* <td>42123E</td>
* <td>12/2015</td>
* <td>Added support for SAM L21/L22, SAM DA1, SAM D09, and SAM C21</td>
* </tr>
* <tr>
* <td>42123D</td>
* <td>12/2014</td>
* <td>Added timer use case.
* Added support for SAM R21 and SAM D10/D11</td>
* </tr>
* <tr>
* <td>42123C</td>
* <td>01/2014</td>
* <td>Added support for SAM D21</td>
* </tr>
* <tr>
* <td>42123B</td>
* <td>06/2013</td>
* <td>Corrected documentation typos</td>
* </tr>
* <tr>
* <td>42123A</td>
* <td>06/2013</td>
* <td>Initial document release</td>
* </tr>
* </table>
*/
#endif /* TC_H_INCLUDED */