rtt-f030/bsp/gkipc/drivers/drv_gmac.c

520 lines
13 KiB
C
Raw Normal View History

2018-03-04 08:21:19 +08:00
/*
* File : drv_gmac.c
* This file is part of GK710X BSP for RT-Thread distribution.
*
* Copyright (c) 2017 GOKE Microelectronics Co., Ltd.
* All rights reserved
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License along
* with this program; if not, write to the Free Software Foundation, Inc.,
* 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Visit http://www.goke.com to get contact with Goke.
*
* Change Logs:
* Date Author Notes
*/
/*****************************************************************************
* Include Section
* add all #include here
*****************************************************************************/
#include <rtthread.h>
#include <rthw.h>
#include <rtdevice.h>
#include <netif/ethernetif.h>
#include "lwipopts.h"
#include "drv_gmac.h"
#include "gtypes.h"
#include "gd_ethernet.h"
#ifdef RT_USING_GMAC
/*****************************************************************************
* Define section
* add all #define here
*****************************************************************************/
#define GMAC_TX_BUFFER_SIZE 2048
#define GMAC_RX_BUFFER_SIZE 2048
#define MAC_ADDR0 0x11
#define MAC_ADDR1 0x10
#define MAC_ADDR2 0xAA
#define MAC_ADDR3 0xBB
#define MAC_ADDR4 0xCC
#define MAC_ADDR5 0x01
/****************************************************************************
* ADT section
* add definition of user defined Data Type that only be used in this file here
***************************************************************************/
#define MAX_ADDR_LEN 6
typedef struct gk_gmac_object
{
/* inherit from ethernet device */
struct eth_device parent;
GD_ETH_InitParamsT init_param;
GD_ETH_OpenParamsT params;
GD_HANDLE eth_handle;
int link;
struct rt_timer timer;
U8 local_mac_address[MAX_ADDR_LEN];
U8* rx_buffer;
U16 rx_len;
struct rt_semaphore rx_lock;
#if 0
UINT8 local_mac_address[MAX_ADDR_LEN];
unsigned short phy_addr;
int full_duplex; // read only
int speed_100m; // read only
UINT8* rx_ring_original;
UINT8* tx_ring_original;
UINT8* rx_buffer_original;
UINT8* tx_buffer_original;
UINT8* rx_buffer;
UINT8* tx_buffer;
Gmac_Rx_DMA_Descriptors* rx_ring;
Gmac_Tx_DMA_Descriptors* tx_ring;
unsigned long rx_buffer_dma;
unsigned long tx_buffer_dma;
unsigned long rx_ring_dma;
unsigned long tx_ring_dma;
unsigned int tx_stop;
struct rt_semaphore tx_lock;
struct rt_semaphore rx_lock;
struct rt_semaphore tx_ack;
struct rt_semaphore rx_ack;
struct rt_semaphore mdio_bus_lock;
int speed;
int duplex;
int link;
int phy_interface;
struct rt_timer timer;
struct rt_timer rx_poll_timer;
gk_gmac_stats_t stats;
unsigned int rx_cur_desc;
unsigned int tx_cur_desc;
unsigned int get_frame_no;
struct rt_workqueue* rx_queue;
struct rt_work* rx_work;
#endif
} gk_gmac_object_t;
static int recv_state = 0;
static void recv_isr_callback(volatile U8* buffer, U16 len);
/******************************************************************************
* Function prototype section
* add prototypes for all functions called by this file,execepting those
* declared in header file
*****************************************************************************/
int gk_gmac_init(rt_device_t dev)
{
GERR ret = GD_OK;
int open_retry = 3;
GD_ETH_MacT macaddr;
gk_gmac_object_t* gmac;
gmac = (gk_gmac_object_t*)dev->user_data;
// eth init .....
gmac->init_param.bHWReset = GFALSE;
gmac->init_param.phyreset = GD_GPIO_0;
gmac->init_param.phyType = 0;
ret = GD_ETH_Init(&(gmac->init_param));
if (ret != GD_OK)
{
rt_kprintf("GD_ETH_Init error", ret);
return -1;
}
gmac->eth_handle = 0;
// Open eth device.
gmac->params.addr = GD_ETH_PHY_EXTERNAL_AUTO;
gmac->params.workmode.speed = GD_ETH_SPEED_100M;
gmac->params.workmode.duplex = GD_ETH_FULL_DUPLEX;
gmac->params.workmode.loopback = GD_ETH_LOOP_OFF;
gmac->params.workmode.mode = GD_ETH_PHY_IF_MODE_RMII;
ret = GD_ETH_Open(&(gmac->params), &(gmac->eth_handle));
while ((ret != GD_OK) && (open_retry--)) {
rt_kprintf("GD_ETH_Open: device open failed(%ld)"
", retry %ld\n", ret, open_retry);
rt_thread_delay(10);
ret = GD_ETH_Open(&(gmac->params), &(gmac->eth_handle));
}
if (ret == GD_OK) {
rt_kprintf("GD_ETH_Open: device open successed 0x%x.\n", gmac->eth_handle);
}
ret = GD_ETH_GetMacAddress(gmac->eth_handle, &macaddr);
if (ret != GD_OK) {
rt_kprintf("GD_ETH_GetMacAddress: device getMacAddress failed, use default.\n");
macaddr[0] = MAC_ADDR0;
macaddr[1] = MAC_ADDR1;
macaddr[2] = MAC_ADDR2;
macaddr[3] = MAC_ADDR3;
macaddr[4] = MAC_ADDR4;
macaddr[5] = MAC_ADDR5;
}
rt_memcpy(gmac->local_mac_address, macaddr, MAX_ADDR_LEN);
// set data coming callback.
GD_ETH_SetNetReceiveFuc(recv_isr_callback);
return 0;
}
void gk_gmac_update_link(void* param)
{
gk_gmac_object_t* gmac;
gmac = (gk_gmac_object_t*)param;
rt_device_t dev = &gmac->parent.parent;
GD_ETH_StatParamsT ethstat;
GD_ETH_GetStat(gmac->eth_handle, &ethstat);
if (gmac->link != ethstat.linkup)
{
rt_kprintf("ipc ethif link is %s\n", (ethstat.linkup == GD_ETH_LINKUP ?"UP":"DOWN"));
rt_kprintf(" speed is %d\n", (int)ethstat.speed);
rt_kprintf(" duplex is %d\n", (int)ethstat.duplex);
if (ethstat.linkup == GD_ETH_LINKUP)
{
rt_kprintf("%s: link up\n", dev->parent.name);
eth_device_linkchange(&gmac->parent, RT_TRUE);
}
else
{
rt_kprintf("%s: link down\n", dev->parent.name);
eth_device_linkchange(&gmac->parent, RT_FALSE);
}
gmac->link = ethstat.linkup;
}
}
/*********************
*
* up level use interface
*
*********************/
static rt_err_t rt_gk_gmac_init(rt_device_t dev)
{
int ret;
gk_gmac_object_t* gmac;
gmac = (gk_gmac_object_t*)dev->user_data;
rt_timer_init(&gmac->timer, "link_timer", gk_gmac_update_link, (void*)gmac,
RT_TICK_PER_SECOND, RT_TIMER_FLAG_PERIODIC);
rt_timer_start(&gmac->timer);
return RT_EOK;
}
static rt_err_t rt_gk_gmac_open(rt_device_t dev, rt_uint16_t oflag)
{
return RT_EOK;
}
static rt_err_t rt_gk_gmac_close(rt_device_t dev)
{
gk_gmac_object_t* gmac;
gmac = (gk_gmac_object_t*)dev->user_data;
GD_ETH_Close(&(gmac->eth_handle));
return RT_EOK;
}
static rt_size_t rt_gk_gmac_read(rt_device_t dev, rt_off_t pos, void* buffer,
rt_size_t size)
{
rt_set_errno(-RT_ENOSYS);
return 0;
}
static rt_size_t rt_gk_gmac_write(rt_device_t dev, rt_off_t pos,
const void* buffer, rt_size_t size)
{
rt_set_errno(-RT_ENOSYS);
return 0;
}
static rt_err_t rt_gk_gmac_control(rt_device_t dev, int cmd, void* args)
{
gk_gmac_object_t* gmac;
gmac = (gk_gmac_object_t*)dev->user_data;
switch (cmd)
{
case NIOCTL_GADDR:
/* get mac address */
if (args)
rt_memcpy(args, gmac->local_mac_address, MAX_ADDR_LEN);
else
return -RT_ERROR;
break;
default:
break;
}
return RT_EOK;
}
/* ethernet device interface */
/* transmit packet. */
static rt_uint8_t g_output_buf[PBUF_POOL_BUFSIZE+20];
static rt_err_t rt_gk_gmac_tx(rt_device_t dev, struct pbuf* p)
{
rt_err_t ret = RT_EOK;
struct pbuf *q = NULL;
gk_gmac_object_t* gmac;
gmac = (gk_gmac_object_t*)dev->user_data;
if (p == NULL)
{
rt_kprintf("rt_gk_gmac_tx: out_pbuf is NULL\n");
ret = ERR_MEM;
return ret;
}
if (gmac->eth_handle == 0)
{
rt_kprintf("rt_gk_gmac_tx: eth_handle is 0\n");
ret = ERR_MEM;
return ret;
}
rt_uint8_t *output_bufptr = p->payload;
if (p->len != p->tot_len)
{
rt_uint8_t *bufptr = g_output_buf;
for (q = p; q != NULL; q = q->next)
{
rt_memcpy(bufptr, q->payload, q->len);
bufptr += q->len;
}
output_bufptr = g_output_buf;
}/* (else) write to ethernet, reduce memcpy */
ret = GD_ETH_Write(gmac->eth_handle, (char *) output_bufptr, p->tot_len, GD_ETH_FRAME_END);
if (ret != GD_OK)
{
rt_kprintf("rt_gk_gmac_tx: eth Write error, len = %d, ret = %lu\n", p->tot_len, ret);
ret = RT_EIO;
}
else
{
ret = RT_EOK;
}
return ret;
}
static struct pbuf * _convert_data_to_pbuf(U8 *buffer, U32 len)
{
struct pbuf *p, *q;
U8 *bufptr;
U32 buflen;
if (len <= 0) {
rt_kprintf("_convert_data_to_pbuf: len(%d) <= 0\n", len);
return NULL;
}
buflen = len;
p = pbuf_alloc(PBUF_RAW, buflen, PBUF_POOL);
if (p != NULL) {
bufptr = (U8 *) buffer;
for (q = p; q != NULL; q = q->next) {
SMEMCPY(q->payload, bufptr, q->len);
bufptr += q->len;
}
} else {
rt_kprintf("_convert_data_to_pbuf: can't alloc pbuf(len=%lu)\n", buflen);
return NULL;
}
return p;
}
/* reception packet. */
static struct pbuf* rt_gk_gmac_rx(rt_device_t dev)
{
gk_gmac_object_t* gmac;
gmac = (gk_gmac_object_t*)dev->user_data;
if (!recv_state)
{
return RT_NULL;
}
struct pbuf* temp_pbuf = RT_NULL;
if (gmac->rx_len <= 0)
{
rt_kprintf("rt_gk_gmac_rx: len(%d) <= 0\n", gmac->rx_len);
return RT_NULL;
}
rt_sem_take(&gmac->rx_lock, RT_WAITING_FOREVER);
//rt_kprintf("rt_gk_gmac_rx buffer = 0x%x, len = %d\n", gmac->rx_buffer, gmac->rx_len);
//temp_pbuf = pbuf_alloc(PBUF_LINK, gmac->rx_len, PBUF_RAM);
temp_pbuf = _convert_data_to_pbuf(gmac->rx_buffer, gmac->rx_len);
if (!temp_pbuf)
{
rt_kprintf("alloc pbuf failed\n");
rt_sem_release(&gmac->rx_lock);
return RT_NULL;
}
//rt_memcpy(temp_pbuf->payload, gmac->rx_buffer, gmac->rx_len);
recv_state = 0;
rt_sem_release(&gmac->rx_lock);
return temp_pbuf;
}
static void recv_isr_callback(volatile U8* buffer, U16 len)
{
gk_gmac_object_t* gmac;
int ret_eth;
recv_state = 1;
rt_device_t dev = rt_device_find("e0");
if (dev == RT_NULL)
{
rt_kprintf("rt_device_find e0 == NULL\n");
return;
}
gmac = (gk_gmac_object_t*)dev->user_data;
if (buffer == NULL) {
rt_kprintf("recv_isr_callback: error buffer == NULL\n");
return;
}
if ((len <= 0) || (len > GMAC_RX_BUFFER_SIZE)) {
rt_kprintf("recv_isr_callback: error len = %d(1~%d)\n", len, GMAC_RX_BUFFER_SIZE);
return;
}
gmac->rx_buffer = (U8*)buffer;
gmac->rx_len = len;
//rt_kprintf("recv_isr_callback = 0x%x, len = %d\n", gmac->rx_buffer, gmac->rx_len);
ret_eth = eth_device_ready(&(gmac->parent));
if (ret_eth != RT_EOK)
{
rt_kprintf("eth_device_ready error %d\n",ret_eth);
}
}
int rt_app_gk_gmac_init(void)
{
gk_gmac_object_t* gmac;
GD_ETH_MacT macaddr;
gmac = (gk_gmac_object_t*)rt_malloc(sizeof(*gmac));
if (gmac == NULL)
{
rt_kprintf("gk_eth_initialize: Cannot allocate Gmac_Object %d\n", 1);
return (-1);
}
memset(gmac, 0, sizeof(gk_gmac_object_t));
rt_sem_init(&gmac->rx_lock, "rx_lock", 1, RT_IPC_FLAG_FIFO);
gmac->parent.parent.init = rt_gk_gmac_init;
gmac->parent.parent.open = rt_gk_gmac_open;
gmac->parent.parent.close = rt_gk_gmac_close;
gmac->parent.parent.read = rt_gk_gmac_read;
gmac->parent.parent.write = rt_gk_gmac_write;
gmac->parent.parent.control = rt_gk_gmac_control;
gmac->parent.parent.user_data = (void*)gmac;
gmac->parent.eth_rx = rt_gk_gmac_rx;
gmac->parent.eth_tx = rt_gk_gmac_tx;
gk_gmac_init(&gmac->parent.parent);
eth_device_init(&(gmac->parent), "e0");
return 0;
}
#ifdef RT_USING_FINSH
#include "finsh.h"
void dump_rx_desc(void)
{
int i;
gk_gmac_object_t* gmac;
rt_device_t dev = rt_device_find("e0");
if (dev == RT_NULL) return;
gmac = (gk_gmac_object_t*)dev->user_data;
rt_kprintf("soft current desc is:%d\n", gmac->link);
}
void dump_tx_desc(void)
{
int i;
gk_gmac_object_t* gmac;
rt_device_t dev = rt_device_find("e0");
if (dev == RT_NULL) return;
gmac = (gk_gmac_object_t*)dev->user_data;
rt_kprintf("soft current desc is:%d\n", gmac->link);
}
FINSH_FUNCTION_EXPORT(dump_rx_desc, dump e0 rx desc);
FINSH_FUNCTION_EXPORT(dump_tx_desc, dump e0 tx desc);
#endif
#endif