rtt-f030/bsp/dm365/platform/dma.c

1593 lines
44 KiB
C
Raw Normal View History

2015-09-04 12:30:20 +08:00
/*
2015-09-04 21:58:08 +08:00
* File : dma.c
* This file is part of RT-Thread RTOS
* COPYRIGHT (C) 2006, RT-Thread Development Team
2015-09-04 12:30:20 +08:00
*
2015-09-04 21:58:08 +08:00
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
2015-09-04 12:30:20 +08:00
*
2015-09-04 21:58:08 +08:00
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
2015-09-04 12:30:20 +08:00
*
2015-09-04 21:58:08 +08:00
* You should have received a copy of the GNU General Public License along
* with this program; if not, write to the Free Software Foundation, Inc.,
* 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
2015-09-04 12:30:20 +08:00
*
2015-09-04 21:58:08 +08:00
* Change Logs:
* Date Author Notes
* 2010-11-13 weety first version
2015-09-04 12:30:20 +08:00
*/
2015-09-04 21:58:08 +08:00
2015-09-04 12:30:20 +08:00
#include <edma.h>
/* Offsets matching "struct edmacc_param" */
#define PARM_OPT 0x00
#define PARM_SRC 0x04
#define PARM_A_B_CNT 0x08
#define PARM_DST 0x0c
#define PARM_SRC_DST_BIDX 0x10
#define PARM_LINK_BCNTRLD 0x14
#define PARM_SRC_DST_CIDX 0x18
#define PARM_CCNT 0x1c
#define PARM_SIZE 0x20
/* Offsets for EDMA CC global channel registers and their shadows */
#define SH_ER 0x00 /* 64 bits */
#define SH_ECR 0x08 /* 64 bits */
#define SH_ESR 0x10 /* 64 bits */
#define SH_CER 0x18 /* 64 bits */
#define SH_EER 0x20 /* 64 bits */
#define SH_EECR 0x28 /* 64 bits */
#define SH_EESR 0x30 /* 64 bits */
#define SH_SER 0x38 /* 64 bits */
#define SH_SECR 0x40 /* 64 bits */
#define SH_IER 0x50 /* 64 bits */
#define SH_IECR 0x58 /* 64 bits */
#define SH_IESR 0x60 /* 64 bits */
#define SH_IPR 0x68 /* 64 bits */
#define SH_ICR 0x70 /* 64 bits */
#define SH_IEVAL 0x78
#define SH_QER 0x80
#define SH_QEER 0x84
#define SH_QEECR 0x88
#define SH_QEESR 0x8c
#define SH_QSER 0x90
#define SH_QSECR 0x94
#define SH_SIZE 0x200
/* Offsets for EDMA CC global registers */
#define EDMA_REV 0x0000
#define EDMA_CCCFG 0x0004
#define EDMA_QCHMAP 0x0200 /* 8 registers */
#define EDMA_DMAQNUM 0x0240 /* 8 registers (4 on OMAP-L1xx) */
#define EDMA_QDMAQNUM 0x0260
#define EDMA_QUETCMAP 0x0280
#define EDMA_QUEPRI 0x0284
#define EDMA_EMR 0x0300 /* 64 bits */
#define EDMA_EMCR 0x0308 /* 64 bits */
#define EDMA_QEMR 0x0310
#define EDMA_QEMCR 0x0314
#define EDMA_CCERR 0x0318
#define EDMA_CCERRCLR 0x031c
#define EDMA_EEVAL 0x0320
#define EDMA_DRAE 0x0340 /* 4 x 64 bits*/
#define EDMA_QRAE 0x0380 /* 4 registers */
#define EDMA_QUEEVTENTRY 0x0400 /* 2 x 16 registers */
#define EDMA_QSTAT 0x0600 /* 2 registers */
#define EDMA_QWMTHRA 0x0620
#define EDMA_QWMTHRB 0x0624
#define EDMA_CCSTAT 0x0640
#define EDMA_M 0x1000 /* global channel registers */
#define EDMA_ECR 0x1008
#define EDMA_ECRH 0x100C
#define EDMA_SHADOW0 0x2000 /* 4 regions shadowing global channels */
#define EDMA_PARM 0x4000 /* 128 param entries */
#define PARM_OFFSET(param_no) (EDMA_PARM + ((param_no) << 5))
#define EDMA_DCHMAP 0x0100 /* 64 registers */
#define CHMAP_EXIST BIT(24)
#define EDMA_MAX_DMACH 64
#define EDMA_MAX_PARAMENTRY 512
#define EDMA_CC0_BASE_REG 0x01c00000
#define EDMA_TC0_BASE_REG 0x01c10000
#define EDMA_TC1_BASE_REG 0x01c10400
#define EDMA_TC2_BASE_REG 0x01c10800
#define EDMA_TC3_BASE_REG 0x01c10c00
#define min_t(type, x, y) ({ \
type __min1 = (x); \
type __min2 = (y); \
__min1 < __min2 ? __min1: __min2; })
/*****************************************************************************/
static void volatile *edmacc_regs_base[EDMA_MAX_CC];
static inline unsigned int edma_read(unsigned ctlr, int offset)
{
return (unsigned int)davinci_readl(edmacc_regs_base[ctlr] + offset);
}
static inline void edma_write(unsigned ctlr, int offset, int val)
{
davinci_writel(val, edmacc_regs_base[ctlr] + offset);
}
static inline void edma_modify(unsigned ctlr, int offset, unsigned and,
unsigned or)
{
unsigned val = edma_read(ctlr, offset);
val &= and;
val |= or;
edma_write(ctlr, offset, val);
}
static inline void edma_and(unsigned ctlr, int offset, unsigned and)
{
unsigned val = edma_read(ctlr, offset);
val &= and;
edma_write(ctlr, offset, val);
}
static inline void edma_or(unsigned ctlr, int offset, unsigned or)
{
unsigned val = edma_read(ctlr, offset);
val |= or;
edma_write(ctlr, offset, val);
}
static inline unsigned int edma_read_array(unsigned ctlr, int offset, int i)
{
return edma_read(ctlr, offset + (i << 2));
}
static inline void edma_write_array(unsigned ctlr, int offset, int i,
unsigned val)
{
edma_write(ctlr, offset + (i << 2), val);
}
static inline void edma_modify_array(unsigned ctlr, int offset, int i,
unsigned and, unsigned or)
{
edma_modify(ctlr, offset + (i << 2), and, or);
}
static inline void edma_or_array(unsigned ctlr, int offset, int i, unsigned or)
{
edma_or(ctlr, offset + (i << 2), or);
}
static inline void edma_or_array2(unsigned ctlr, int offset, int i, int j,
unsigned or)
{
edma_or(ctlr, offset + ((i*2 + j) << 2), or);
}
static inline void edma_write_array2(unsigned ctlr, int offset, int i, int j,
unsigned val)
{
edma_write(ctlr, offset + ((i*2 + j) << 2), val);
}
static inline unsigned int edma_shadow0_read(unsigned ctlr, int offset)
{
return edma_read(ctlr, EDMA_SHADOW0 + offset);
}
static inline unsigned int edma_shadow0_read_array(unsigned ctlr, int offset,
int i)
{
return edma_read(ctlr, EDMA_SHADOW0 + offset + (i << 2));
}
static inline void edma_shadow0_write(unsigned ctlr, int offset, unsigned val)
{
edma_write(ctlr, EDMA_SHADOW0 + offset, val);
}
static inline void edma_shadow0_write_array(unsigned ctlr, int offset, int i,
unsigned val)
{
edma_write(ctlr, EDMA_SHADOW0 + offset + (i << 2), val);
}
static inline unsigned int edma_parm_read(unsigned ctlr, int offset,
int param_no)
{
return edma_read(ctlr, EDMA_PARM + offset + (param_no << 5));
}
static inline void edma_parm_write(unsigned ctlr, int offset, int param_no,
unsigned val)
{
edma_write(ctlr, EDMA_PARM + offset + (param_no << 5), val);
}
static inline void edma_parm_modify(unsigned ctlr, int offset, int param_no,
unsigned and, unsigned or)
{
edma_modify(ctlr, EDMA_PARM + offset + (param_no << 5), and, or);
}
static inline void edma_parm_and(unsigned ctlr, int offset, int param_no,
unsigned and)
{
edma_and(ctlr, EDMA_PARM + offset + (param_no << 5), and);
}
static inline void edma_parm_or(unsigned ctlr, int offset, int param_no,
unsigned or)
{
edma_or(ctlr, EDMA_PARM + offset + (param_no << 5), or);
}
#if 0
static inline void set_bits(int offset, int len, unsigned long *p)
{
for (; len > 0; len--)
set_bit(offset + (len - 1), p);
}
static inline void clear_bits(int offset, int len, unsigned long *p)
{
for (; len > 0; len--)
clear_bit(offset + (len - 1), p);
}
#endif
/*****************************************************************************/
#define BIT(nr) (1UL << (nr))
#define BITS_PER_LONG 32
#define BIT_MASK(nr) (1UL << ((nr) % BITS_PER_LONG))
#define BIT_WORD(nr) ((nr) / BITS_PER_LONG)
#define BITS_PER_BYTE 8
#define DIV_ROUND_UP(n,d) (((n) + (d) - 1) / (d))
#define BITS_TO_LONGS(nr) DIV_ROUND_UP(nr, BITS_PER_BYTE * sizeof(long))
#define DECLARE_BITMAP(name,bits) \
unsigned long name[BITS_TO_LONGS(bits)]
/**
* test_bit - Determine whether a bit is set
* @nr: bit number to test
* @addr: Address to start counting from
*/
static inline int test_bit(int nr, const volatile unsigned long *addr)
{
return 1UL & (addr[BIT_WORD(nr)] >> (nr & (BITS_PER_LONG-1)));
}
static inline void clear_bit(int nr, volatile unsigned long *addr)
{
unsigned long mask = BIT_MASK(nr);
unsigned long *p = ((unsigned long *)addr) + BIT_WORD(nr);
rt_base_t level;
level = rt_hw_interrupt_disable();
*p &= ~mask;
rt_hw_interrupt_enable(level);
}
static inline int test_and_set_bit(int nr, volatile unsigned long *addr)
{
unsigned long mask = BIT_MASK(nr);
unsigned long *p = ((unsigned long *)addr) + BIT_WORD(nr);
unsigned long old;
rt_base_t level;
level = rt_hw_interrupt_disable();
old = *p;
*p = old | mask;
rt_hw_interrupt_enable(level);
return (old & mask) != 0;
}
static inline void set_bit(int nr, volatile unsigned long *addr)
{
unsigned long mask = BIT_MASK(nr);
unsigned long *p = ((unsigned long *)addr) + BIT_WORD(nr);
rt_base_t level;
level = rt_hw_interrupt_disable();
*p |= mask;
rt_hw_interrupt_enable(level);
}
/*
* Little endian assembly bitops. nr = 0 -> byte 0 bit 0.
*/
extern int _find_first_zero_bit_le(const void * p, unsigned size);
extern int _find_next_zero_bit_le(const void * p, int size, int offset);
extern int _find_first_bit_le(const unsigned long *p, unsigned size);
extern int _find_next_bit_le(const unsigned long *p, int size, int offset);
/*
* These are the little endian, atomic definitions.
*/
#define find_first_zero_bit(p,sz) _find_first_zero_bit_le(p,sz)
#define find_next_zero_bit(p,sz,off) _find_next_zero_bit_le(p,sz,off)
#define find_first_bit(p,sz) _find_first_bit_le(p,sz)
#define find_next_bit(p,sz,off) _find_next_bit_le(p,sz,off)
/* actual number of DMA channels and slots on this silicon */
struct edma {
/* how many dma resources of each type */
unsigned num_channels;
unsigned num_region;
unsigned num_slots;
unsigned num_tc;
unsigned num_cc;
enum dma_event_q default_queue;
/* list of channels with no even trigger; terminated by "-1" */
const rt_int8_t *noevent;
/* The edma_inuse bit for each PaRAM slot is clear unless the
* channel is in use ... by ARM or DSP, for QDMA, or whatever.
*/
DECLARE_BITMAP(edma_inuse, EDMA_MAX_PARAMENTRY);
/* The edma_unused bit for each channel is clear unless
* it is not being used on this platform. It uses a bit
* of SOC-specific initialization code.
*/
DECLARE_BITMAP(edma_unused, EDMA_MAX_DMACH);
unsigned irq_res_start;
unsigned irq_res_end;
struct dma_interrupt_data {
void (*callback)(unsigned channel, unsigned short ch_status,
void *data);
void *data;
} intr_data[EDMA_MAX_DMACH];
};
static struct edma *edma_cc[EDMA_MAX_CC];
static int arch_num_cc;
/* dummy param set used to (re)initialize parameter RAM slots */
static const struct edmacc_param dummy_paramset = {
.link_bcntrld = 0xffff,
.ccnt = 1,
};
/*****************************************************************************/
static void map_dmach_queue(unsigned ctlr, unsigned ch_no,
enum dma_event_q queue_no)
{
int bit = (ch_no & 0x7) * 4;
/* default to low priority queue */
if (queue_no == EVENTQ_DEFAULT)
queue_no = edma_cc[ctlr]->default_queue;
queue_no &= 7;
edma_modify_array(ctlr, EDMA_DMAQNUM, (ch_no >> 3),
~(0x7 << bit), queue_no << bit);
}
static void map_queue_tc(unsigned ctlr, int queue_no, int tc_no)
{
int bit = queue_no * 4;
edma_modify(ctlr, EDMA_QUETCMAP, ~(0x7 << bit), ((tc_no & 0x7) << bit));
}
static void assign_priority_to_queue(unsigned ctlr, int queue_no,
int priority)
{
int bit = queue_no * 4;
edma_modify(ctlr, EDMA_QUEPRI, ~(0x7 << bit),
((priority & 0x7) << bit));
}
/**
* map_dmach_param - Maps channel number to param entry number
*
* This maps the dma channel number to param entry numberter. In
* other words using the DMA channel mapping registers a param entry
* can be mapped to any channel
*
* Callers are responsible for ensuring the channel mapping logic is
* included in that particular EDMA variant (Eg : dm646x)
*
*/
static void map_dmach_param(unsigned ctlr)
{
int i;
for (i = 0; i < EDMA_MAX_DMACH; i++)
edma_write_array(ctlr, EDMA_DCHMAP , i , (i << 5));
}
static inline void
setup_dma_interrupt(unsigned lch,
void (*callback)(unsigned channel, rt_uint16_t ch_status, void *data),
void *data)
{
unsigned ctlr;
ctlr = EDMA_CTLR(lch);
lch = EDMA_CHAN_SLOT(lch);
if (!callback)
edma_shadow0_write_array(ctlr, SH_IECR, lch >> 5,
BIT(lch & 0x1f));
edma_cc[ctlr]->intr_data[lch].callback = callback;
edma_cc[ctlr]->intr_data[lch].data = data;
if (callback) {
edma_shadow0_write_array(ctlr, SH_ICR, lch >> 5,
BIT(lch & 0x1f));
edma_shadow0_write_array(ctlr, SH_IESR, lch >> 5,
BIT(lch & 0x1f));
}
}
static int irq2ctlr(int irq)
{
if (irq >= edma_cc[0]->irq_res_start && irq <= edma_cc[0]->irq_res_end)
return 0;
else if (irq >= edma_cc[1]->irq_res_start &&
irq <= edma_cc[1]->irq_res_end)
return 1;
return -1;
}
/******************************************************************************
*
* DMA interrupt handler
*
*****************************************************************************/
static void dma_irq_handler(int irq, void *data)
{
int i;
int ctlr;
unsigned int cnt = 0;
ctlr = irq2ctlr(irq);
if (ctlr < 0)
return ;
edma_dbg("dma_irq_handler\n");
if ((edma_shadow0_read_array(ctlr, SH_IPR, 0) == 0) &&
(edma_shadow0_read_array(ctlr, SH_IPR, 1) == 0))
return ;
while (1) {
int j;
if (edma_shadow0_read_array(ctlr, SH_IPR, 0) &
edma_shadow0_read_array(ctlr, SH_IER, 0))
j = 0;
else if (edma_shadow0_read_array(ctlr, SH_IPR, 1) &
edma_shadow0_read_array(ctlr, SH_IER, 1))
j = 1;
else
break;
edma_dbg("IPR%d %08x\n", j,
edma_shadow0_read_array(ctlr, SH_IPR, j));
for (i = 0; i < 32; i++) {
int k = (j << 5) + i;
if ((edma_shadow0_read_array(ctlr, SH_IPR, j) & BIT(i))
&& (edma_shadow0_read_array(ctlr,
SH_IER, j) & BIT(i))) {
/* Clear the corresponding IPR bits */
edma_shadow0_write_array(ctlr, SH_ICR, j,
BIT(i));
if (edma_cc[ctlr]->intr_data[k].callback)
edma_cc[ctlr]->intr_data[k].callback(
k, DMA_COMPLETE,
edma_cc[ctlr]->intr_data[k].
data);
}
}
cnt++;
if (cnt > 10)
break;
}
edma_shadow0_write(ctlr, SH_IEVAL, 1);
return ;
}
/******************************************************************************
*
* DMA error interrupt handler
*
*****************************************************************************/
static void dma_ccerr_handler(int irq, void *data)
{
int i;
int ctlr;
unsigned int cnt = 0;
ctlr = irq2ctlr(irq);
if (ctlr < 0)
return ;
edma_dbg("dma_ccerr_handler\n");
if ((edma_read_array(ctlr, EDMA_EMR, 0) == 0) &&
(edma_read_array(ctlr, EDMA_EMR, 1) == 0) &&
(edma_read(ctlr, EDMA_QEMR) == 0) &&
(edma_read(ctlr, EDMA_CCERR) == 0))
return ;
while (1) {
int j = -1;
if (edma_read_array(ctlr, EDMA_EMR, 0))
j = 0;
else if (edma_read_array(ctlr, EDMA_EMR, 1))
j = 1;
if (j >= 0) {
edma_dbg("EMR%d %08x\n", j,
edma_read_array(ctlr, EDMA_EMR, j));
for (i = 0; i < 32; i++) {
int k = (j << 5) + i;
if (edma_read_array(ctlr, EDMA_EMR, j) &
BIT(i)) {
/* Clear the corresponding EMR bits */
edma_write_array(ctlr, EDMA_EMCR, j,
BIT(i));
/* Clear any SER */
edma_shadow0_write_array(ctlr, SH_SECR,
j, BIT(i));
if (edma_cc[ctlr]->intr_data[k].
callback) {
edma_cc[ctlr]->intr_data[k].
callback(k,
DMA_CC_ERROR,
edma_cc[ctlr]->intr_data
[k].data);
}
}
}
} else if (edma_read(ctlr, EDMA_QEMR)) {
edma_dbg("QEMR %02x\n",
edma_read(ctlr, EDMA_QEMR));
for (i = 0; i < 8; i++) {
if (edma_read(ctlr, EDMA_QEMR) & BIT(i)) {
/* Clear the corresponding IPR bits */
edma_write(ctlr, EDMA_QEMCR, BIT(i));
edma_shadow0_write(ctlr, SH_QSECR,
BIT(i));
/* NOTE: not reported!! */
}
}
} else if (edma_read(ctlr, EDMA_CCERR)) {
edma_dbg("CCERR %08x\n",
edma_read(ctlr, EDMA_CCERR));
/* FIXME: CCERR.BIT(16) ignored! much better
* to just write CCERRCLR with CCERR value...
*/
for (i = 0; i < 8; i++) {
if (edma_read(ctlr, EDMA_CCERR) & BIT(i)) {
/* Clear the corresponding IPR bits */
edma_write(ctlr, EDMA_CCERRCLR, BIT(i));
/* NOTE: not reported!! */
}
}
}
if ((edma_read_array(ctlr, EDMA_EMR, 0) == 0) &&
(edma_read_array(ctlr, EDMA_EMR, 1) == 0) &&
(edma_read(ctlr, EDMA_QEMR) == 0) &&
(edma_read(ctlr, EDMA_CCERR) == 0))
break;
cnt++;
if (cnt > 10)
break;
}
edma_write(ctlr, EDMA_EEVAL, 1);
return ;
}
/******************************************************************************
*
* Transfer controller error interrupt handlers
*
*****************************************************************************/
#define tc_errs_handled RT_FALSE/* disabled as long as they're NOPs */
static void dma_tc0err_handler(int irq, void *data)
{
edma_dbg("dma_tc0err_handler\n");
return ;
}
static void dma_tc1err_handler(int irq, void *data)
{
edma_dbg("dma_tc1err_handler\n");
return ;
}
static int reserve_contiguous_slots(int ctlr, unsigned int id,
unsigned int num_slots,
unsigned int start_slot)
{
int i, j;
unsigned int count = num_slots;
int stop_slot = start_slot;
DECLARE_BITMAP(tmp_inuse, EDMA_MAX_PARAMENTRY);
for (i = start_slot; i < edma_cc[ctlr]->num_slots; ++i) {
j = EDMA_CHAN_SLOT(i);
if (!test_and_set_bit(j, edma_cc[ctlr]->edma_inuse)) {
/* Record our current beginning slot */
if (count == num_slots)
stop_slot = i;
count--;
set_bit(j, tmp_inuse);
if (count == 0)
break;
} else {
clear_bit(j, tmp_inuse);
if (id == EDMA_CONT_PARAMS_FIXED_EXACT) {
stop_slot = i;
break;
} else {
count = num_slots;
}
}
}
/*
* We have to clear any bits that we set
* if we run out parameter RAM slots, i.e we do find a set
* of contiguous parameter RAM slots but do not find the exact number
* requested as we may reach the total number of parameter RAM slots
*/
if (i == edma_cc[ctlr]->num_slots)
stop_slot = i;
for (j = start_slot; j < stop_slot; j++)
if (test_bit(j, tmp_inuse))
clear_bit(j, edma_cc[ctlr]->edma_inuse);
if (count)
return -RT_EBUSY;
for (j = i - num_slots + 1; j <= i; ++j)
rt_memcpy((void *)(edmacc_regs_base[ctlr] + PARM_OFFSET(j)),
&dummy_paramset, PARM_SIZE);
return EDMA_CTLR_CHAN(ctlr, i - num_slots + 1);
}
#if 0
static int prepare_unused_channel_list(struct device *dev, void *data)
{
struct platform_device *pdev = to_platform_device(dev);
int i, ctlr;
for (i = 0; i < pdev->num_resources; i++) {
if ((pdev->resource[i].flags & IORESOURCE_DMA) &&
(int)pdev->resource[i].start >= 0) {
ctlr = EDMA_CTLR(pdev->resource[i].start);
clear_bit(EDMA_CHAN_SLOT(pdev->resource[i].start),
edma_cc[ctlr]->edma_unused);
}
}
return 0;
}
#endif
/*-----------------------------------------------------------------------*/
static rt_bool_t unused_chan_list_done;
/* Resource alloc/free: dma channels, parameter RAM slots */
/**
* edma_alloc_channel - allocate DMA channel and paired parameter RAM
* @channel: specific channel to allocate; negative for "any unmapped channel"
* @callback: optional; to be issued on DMA completion or errors
* @data: passed to callback
* @eventq_no: an EVENTQ_* constant, used to choose which Transfer
* Controller (TC) executes requests using this channel. Use
* EVENTQ_DEFAULT unless you really need a high priority queue.
*
* This allocates a DMA channel and its associated parameter RAM slot.
* The parameter RAM is initialized to hold a dummy transfer.
*
* Normal use is to pass a specific channel number as @channel, to make
* use of hardware events mapped to that channel. When the channel will
* be used only for software triggering or event chaining, channels not
* mapped to hardware events (or mapped to unused events) are preferable.
*
* DMA transfers start from a channel using edma_start(), or by
* chaining. When the transfer described in that channel's parameter RAM
* slot completes, that slot's data may be reloaded through a link.
*
* DMA errors are only reported to the @callback associated with the
* channel driving that transfer, but transfer completion callbacks can
* be sent to another channel under control of the TCC field in
* the option word of the transfer's parameter RAM set. Drivers must not
* use DMA transfer completion callbacks for channels they did not allocate.
* (The same applies to TCC codes used in transfer chaining.)
*
* Returns the number of the channel, else negative errno.
*/
int edma_alloc_channel(int channel,
void (*callback)(unsigned channel, rt_uint16_t ch_status, void *data),
void *data,
enum dma_event_q eventq_no)
{
unsigned i, done = 0, ctlr = 0;
int ret = 0;
#if 0
if (!unused_chan_list_done) {
/*
* Scan all the platform devices to find out the EDMA channels
* used and clear them in the unused list, making the rest
* available for ARM usage.
*/
ret = bus_for_each_dev(&platform_bus_type, NULL, NULL,
prepare_unused_channel_list);
if (ret < 0)
return ret;
unused_chan_list_done = true;
}
#endif
if (channel >= 0) {
ctlr = EDMA_CTLR(channel);
channel = EDMA_CHAN_SLOT(channel);
clear_bit(channel, edma_cc[ctlr]->edma_unused);
}
if (channel < 0) {
for (i = 0; i < arch_num_cc; i++) {
channel = 0;
for (;;) {
channel = find_next_bit(edma_cc[i]->edma_unused,
edma_cc[i]->num_channels,
channel);
if (channel == edma_cc[i]->num_channels)
break;
if (!test_and_set_bit(channel,
edma_cc[i]->edma_inuse)) {
done = 1;
ctlr = i;
break;
}
channel++;
}
if (done)
break;
}
if (!done)
return -RT_ENOMEM;
} else if (channel >= edma_cc[ctlr]->num_channels) {
return -RT_ERROR;
} else if (test_and_set_bit(channel, edma_cc[ctlr]->edma_inuse)) {
return -RT_EBUSY;
}
/* ensure access through shadow region 0 */
edma_or_array2(ctlr, EDMA_DRAE, 0, channel >> 5, BIT(channel & 0x1f));
/* ensure no events are pending */
edma_stop(EDMA_CTLR_CHAN(ctlr, channel));
rt_memcpy((void *)(edmacc_regs_base[ctlr] + PARM_OFFSET(channel)),
&dummy_paramset, PARM_SIZE);
if (callback)
setup_dma_interrupt(EDMA_CTLR_CHAN(ctlr, channel),
callback, data);
map_dmach_queue(ctlr, channel, eventq_no);
return EDMA_CTLR_CHAN(ctlr, channel);
}
/**
* edma_free_channel - deallocate DMA channel
* @channel: dma channel returned from edma_alloc_channel()
*
* This deallocates the DMA channel and associated parameter RAM slot
* allocated by edma_alloc_channel().
*
* Callers are responsible for ensuring the channel is inactive, and
* will not be reactivated by linking, chaining, or software calls to
* edma_start().
*/
void edma_free_channel(unsigned channel)
{
unsigned ctlr;
ctlr = EDMA_CTLR(channel);
channel = EDMA_CHAN_SLOT(channel);
if (channel >= edma_cc[ctlr]->num_channels)
return;
setup_dma_interrupt(channel, RT_NULL, RT_NULL);
/* REVISIT should probably take out of shadow region 0 */
rt_memcpy((void *)(edmacc_regs_base[ctlr] + PARM_OFFSET(channel)),
&dummy_paramset, PARM_SIZE);
clear_bit(channel, edma_cc[ctlr]->edma_inuse);
}
/**
* edma_alloc_slot - allocate DMA parameter RAM
* @slot: specific slot to allocate; negative for "any unused slot"
*
* This allocates a parameter RAM slot, initializing it to hold a
* dummy transfer. Slots allocated using this routine have not been
* mapped to a hardware DMA channel, and will normally be used by
* linking to them from a slot associated with a DMA channel.
*
* Normal use is to pass EDMA_SLOT_ANY as the @slot, but specific
* slots may be allocated on behalf of DSP firmware.
*
* Returns the number of the slot, else negative errno.
*/
int edma_alloc_slot(unsigned ctlr, int slot)
{
if (slot >= 0)
slot = EDMA_CHAN_SLOT(slot);
if (slot < 0) {
slot = edma_cc[ctlr]->num_channels;
for (;;) {
slot = find_next_zero_bit(edma_cc[ctlr]->edma_inuse,
edma_cc[ctlr]->num_slots, slot);
if (slot == edma_cc[ctlr]->num_slots)
return -RT_ENOMEM;
if (!test_and_set_bit(slot, edma_cc[ctlr]->edma_inuse))
break;
}
} else if (slot < edma_cc[ctlr]->num_channels ||
slot >= edma_cc[ctlr]->num_slots) {
return -RT_ERROR;
} else if (test_and_set_bit(slot, edma_cc[ctlr]->edma_inuse)) {
return -RT_EBUSY;
}
rt_memcpy((void *)(edmacc_regs_base[ctlr] + PARM_OFFSET(slot)),
&dummy_paramset, PARM_SIZE);
return EDMA_CTLR_CHAN(ctlr, slot);
}
/**
* edma_free_slot - deallocate DMA parameter RAM
* @slot: parameter RAM slot returned from edma_alloc_slot()
*
* This deallocates the parameter RAM slot allocated by edma_alloc_slot().
* Callers are responsible for ensuring the slot is inactive, and will
* not be activated.
*/
void edma_free_slot(unsigned slot)
{
unsigned ctlr;
ctlr = EDMA_CTLR(slot);
slot = EDMA_CHAN_SLOT(slot);
if (slot < edma_cc[ctlr]->num_channels ||
slot >= edma_cc[ctlr]->num_slots)
return;
rt_memcpy((void *)(edmacc_regs_base[ctlr] + PARM_OFFSET(slot)),
&dummy_paramset, PARM_SIZE);
clear_bit(slot, edma_cc[ctlr]->edma_inuse);
}
/**
* edma_alloc_cont_slots- alloc contiguous parameter RAM slots
* The API will return the starting point of a set of
* contiguous parameter RAM slots that have been requested
*
* @id: can only be EDMA_CONT_PARAMS_ANY or EDMA_CONT_PARAMS_FIXED_EXACT
* or EDMA_CONT_PARAMS_FIXED_NOT_EXACT
* @count: number of contiguous Paramter RAM slots
* @slot - the start value of Parameter RAM slot that should be passed if id
* is EDMA_CONT_PARAMS_FIXED_EXACT or EDMA_CONT_PARAMS_FIXED_NOT_EXACT
*
* If id is EDMA_CONT_PARAMS_ANY then the API starts looking for a set of
* contiguous Parameter RAM slots from parameter RAM 64 in the case of
* DaVinci SOCs and 32 in the case of DA8xx SOCs.
*
* If id is EDMA_CONT_PARAMS_FIXED_EXACT then the API starts looking for a
* set of contiguous parameter RAM slots from the "slot" that is passed as an
* argument to the API.
*
* If id is EDMA_CONT_PARAMS_FIXED_NOT_EXACT then the API initially tries
* starts looking for a set of contiguous parameter RAMs from the "slot"
* that is passed as an argument to the API. On failure the API will try to
* find a set of contiguous Parameter RAM slots from the remaining Parameter
* RAM slots
*/
int edma_alloc_cont_slots(unsigned ctlr, unsigned int id, int slot, int count)
{
/*
* The start slot requested should be greater than
* the number of channels and lesser than the total number
* of slots
*/
if ((id != EDMA_CONT_PARAMS_ANY) &&
(slot < edma_cc[ctlr]->num_channels ||
slot >= edma_cc[ctlr]->num_slots))
return -RT_ERROR;
/*
* The number of parameter RAM slots requested cannot be less than 1
* and cannot be more than the number of slots minus the number of
* channels
*/
if (count < 1 || count >
(edma_cc[ctlr]->num_slots - edma_cc[ctlr]->num_channels))
return -RT_ERROR;
switch (id) {
case EDMA_CONT_PARAMS_ANY:
return reserve_contiguous_slots(ctlr, id, count,
edma_cc[ctlr]->num_channels);
case EDMA_CONT_PARAMS_FIXED_EXACT:
case EDMA_CONT_PARAMS_FIXED_NOT_EXACT:
return reserve_contiguous_slots(ctlr, id, count, slot);
default:
return -RT_ERROR;
}
}
/**
* edma_free_cont_slots - deallocate DMA parameter RAM slots
* @slot: first parameter RAM of a set of parameter RAM slots to be freed
* @count: the number of contiguous parameter RAM slots to be freed
*
* This deallocates the parameter RAM slots allocated by
* edma_alloc_cont_slots.
* Callers/applications need to keep track of sets of contiguous
* parameter RAM slots that have been allocated using the edma_alloc_cont_slots
* API.
* Callers are responsible for ensuring the slots are inactive, and will
* not be activated.
*/
int edma_free_cont_slots(unsigned slot, int count)
{
unsigned ctlr, slot_to_free;
int i;
ctlr = EDMA_CTLR(slot);
slot = EDMA_CHAN_SLOT(slot);
if (slot < edma_cc[ctlr]->num_channels ||
slot >= edma_cc[ctlr]->num_slots ||
count < 1)
return -RT_ERROR;
for (i = slot; i < slot + count; ++i) {
ctlr = EDMA_CTLR(i);
slot_to_free = EDMA_CHAN_SLOT(i);
rt_memcpy((void *)(edmacc_regs_base[ctlr] + PARM_OFFSET(slot_to_free)),
&dummy_paramset, PARM_SIZE);
clear_bit(slot_to_free, edma_cc[ctlr]->edma_inuse);
}
return 0;
}
/*-----------------------------------------------------------------------*/
/* Parameter RAM operations (i) -- read/write partial slots */
/**
* edma_set_src - set initial DMA source address in parameter RAM slot
* @slot: parameter RAM slot being configured
* @src_port: physical address of source (memory, controller FIFO, etc)
* @addressMode: INCR, except in very rare cases
* @fifoWidth: ignored unless @addressMode is FIFO, else specifies the
* width to use when addressing the fifo (e.g. W8BIT, W32BIT)
*
* Note that the source address is modified during the DMA transfer
* according to edma_set_src_index().
*/
void edma_set_src(unsigned slot, rt_uint32_t src_port,
enum address_mode mode, enum fifo_width width)
{
unsigned ctlr;
ctlr = EDMA_CTLR(slot);
slot = EDMA_CHAN_SLOT(slot);
if (slot < edma_cc[ctlr]->num_slots) {
unsigned int i = edma_parm_read(ctlr, PARM_OPT, slot);
if (mode) {
/* set SAM and program FWID */
i = (i & ~(EDMA_FWID)) | (SAM | ((width & 0x7) << 8));
} else {
/* clear SAM */
i &= ~SAM;
}
edma_parm_write(ctlr, PARM_OPT, slot, i);
/* set the source port address
in source register of param structure */
edma_parm_write(ctlr, PARM_SRC, slot, src_port);
}
}
/**
* edma_set_dest - set initial DMA destination address in parameter RAM slot
* @slot: parameter RAM slot being configured
* @dest_port: physical address of destination (memory, controller FIFO, etc)
* @addressMode: INCR, except in very rare cases
* @fifoWidth: ignored unless @addressMode is FIFO, else specifies the
* width to use when addressing the fifo (e.g. W8BIT, W32BIT)
*
* Note that the destination address is modified during the DMA transfer
* according to edma_set_dest_index().
*/
void edma_set_dest(unsigned slot, rt_uint32_t dest_port,
enum address_mode mode, enum fifo_width width)
{
unsigned ctlr;
ctlr = EDMA_CTLR(slot);
slot = EDMA_CHAN_SLOT(slot);
if (slot < edma_cc[ctlr]->num_slots) {
unsigned int i = edma_parm_read(ctlr, PARM_OPT, slot);
if (mode) {
/* set DAM and program FWID */
i = (i & ~(EDMA_FWID)) | (DAM | ((width & 0x7) << 8));
} else {
/* clear DAM */
i &= ~DAM;
}
edma_parm_write(ctlr, PARM_OPT, slot, i);
/* set the destination port address
in dest register of param structure */
edma_parm_write(ctlr, PARM_DST, slot, dest_port);
}
}
/**
* edma_get_position - returns the current transfer points
* @slot: parameter RAM slot being examined
* @src: pointer to source port position
* @dst: pointer to destination port position
*
* Returns current source and destination addresses for a particular
* parameter RAM slot. Its channel should not be active when this is called.
*/
void edma_get_position(unsigned slot, rt_uint32_t *src, rt_uint32_t *dst)
{
struct edmacc_param temp;
unsigned ctlr;
ctlr = EDMA_CTLR(slot);
slot = EDMA_CHAN_SLOT(slot);
edma_read_slot(EDMA_CTLR_CHAN(ctlr, slot), &temp);
if (src != RT_NULL)
*src = temp.src;
if (dst != RT_NULL)
*dst = temp.dst;
}
/**
* edma_set_src_index - configure DMA source address indexing
* @slot: parameter RAM slot being configured
* @src_bidx: byte offset between source arrays in a frame
* @src_cidx: byte offset between source frames in a block
*
* Offsets are specified to support either contiguous or discontiguous
* memory transfers, or repeated access to a hardware register, as needed.
* When accessing hardware registers, both offsets are normally zero.
*/
void edma_set_src_index(unsigned slot, rt_int16_t src_bidx, rt_int16_t src_cidx)
{
unsigned ctlr;
ctlr = EDMA_CTLR(slot);
slot = EDMA_CHAN_SLOT(slot);
if (slot < edma_cc[ctlr]->num_slots) {
edma_parm_modify(ctlr, PARM_SRC_DST_BIDX, slot,
0xffff0000, src_bidx);
edma_parm_modify(ctlr, PARM_SRC_DST_CIDX, slot,
0xffff0000, src_cidx);
}
}
/**
* edma_set_dest_index - configure DMA destination address indexing
* @slot: parameter RAM slot being configured
* @dest_bidx: byte offset between destination arrays in a frame
* @dest_cidx: byte offset between destination frames in a block
*
* Offsets are specified to support either contiguous or discontiguous
* memory transfers, or repeated access to a hardware register, as needed.
* When accessing hardware registers, both offsets are normally zero.
*/
void edma_set_dest_index(unsigned slot, rt_int16_t dest_bidx, rt_int16_t dest_cidx)
{
unsigned ctlr;
ctlr = EDMA_CTLR(slot);
slot = EDMA_CHAN_SLOT(slot);
if (slot < edma_cc[ctlr]->num_slots) {
edma_parm_modify(ctlr, PARM_SRC_DST_BIDX, slot,
0x0000ffff, dest_bidx << 16);
edma_parm_modify(ctlr, PARM_SRC_DST_CIDX, slot,
0x0000ffff, dest_cidx << 16);
}
}
/**
* edma_set_transfer_params - configure DMA transfer parameters
* @slot: parameter RAM slot being configured
* @acnt: how many bytes per array (at least one)
* @bcnt: how many arrays per frame (at least one)
* @ccnt: how many frames per block (at least one)
* @bcnt_rld: used only for A-Synchronized transfers; this specifies
* the value to reload into bcnt when it decrements to zero
* @sync_mode: ASYNC or ABSYNC
*
* See the EDMA3 documentation to understand how to configure and link
* transfers using the fields in PaRAM slots. If you are not doing it
* all at once with edma_write_slot(), you will use this routine
* plus two calls each for source and destination, setting the initial
* address and saying how to index that address.
*
* An example of an A-Synchronized transfer is a serial link using a
* single word shift register. In that case, @acnt would be equal to
* that word size; the serial controller issues a DMA synchronization
* event to transfer each word, and memory access by the DMA transfer
* controller will be word-at-a-time.
*
* An example of an AB-Synchronized transfer is a device using a FIFO.
* In that case, @acnt equals the FIFO width and @bcnt equals its depth.
* The controller with the FIFO issues DMA synchronization events when
* the FIFO threshold is reached, and the DMA transfer controller will
* transfer one frame to (or from) the FIFO. It will probably use
* efficient burst modes to access memory.
*/
void edma_set_transfer_params(unsigned slot,
rt_uint16_t acnt, rt_uint16_t bcnt, rt_uint16_t ccnt,
rt_uint16_t bcnt_rld, enum sync_dimension sync_mode)
{
unsigned ctlr;
ctlr = EDMA_CTLR(slot);
slot = EDMA_CHAN_SLOT(slot);
if (slot < edma_cc[ctlr]->num_slots) {
edma_parm_modify(ctlr, PARM_LINK_BCNTRLD, slot,
0x0000ffff, bcnt_rld << 16);
if (sync_mode == ASYNC)
edma_parm_and(ctlr, PARM_OPT, slot, ~SYNCDIM);
else
edma_parm_or(ctlr, PARM_OPT, slot, SYNCDIM);
/* Set the acount, bcount, ccount registers */
edma_parm_write(ctlr, PARM_A_B_CNT, slot, (bcnt << 16) | acnt);
edma_parm_write(ctlr, PARM_CCNT, slot, ccnt);
}
}
/**
* edma_link - link one parameter RAM slot to another
* @from: parameter RAM slot originating the link
* @to: parameter RAM slot which is the link target
*
* The originating slot should not be part of any active DMA transfer.
*/
void edma_link(unsigned from, unsigned to)
{
unsigned ctlr_from, ctlr_to;
ctlr_from = EDMA_CTLR(from);
from = EDMA_CHAN_SLOT(from);
ctlr_to = EDMA_CTLR(to);
to = EDMA_CHAN_SLOT(to);
if (from >= edma_cc[ctlr_from]->num_slots)
return;
if (to >= edma_cc[ctlr_to]->num_slots)
return;
edma_parm_modify(ctlr_from, PARM_LINK_BCNTRLD, from, 0xffff0000,
PARM_OFFSET(to));
}
/**
* edma_unlink - cut link from one parameter RAM slot
* @from: parameter RAM slot originating the link
*
* The originating slot should not be part of any active DMA transfer.
* Its link is set to 0xffff.
*/
void edma_unlink(unsigned from)
{
unsigned ctlr;
ctlr = EDMA_CTLR(from);
from = EDMA_CHAN_SLOT(from);
if (from >= edma_cc[ctlr]->num_slots)
return;
edma_parm_or(ctlr, PARM_LINK_BCNTRLD, from, 0xffff);
}
/*-----------------------------------------------------------------------*/
/* Parameter RAM operations (ii) -- read/write whole parameter sets */
/**
* edma_write_slot - write parameter RAM data for slot
* @slot: number of parameter RAM slot being modified
* @param: data to be written into parameter RAM slot
*
* Use this to assign all parameters of a transfer at once. This
* allows more efficient setup of transfers than issuing multiple
* calls to set up those parameters in small pieces, and provides
* complete control over all transfer options.
*/
void edma_write_slot(unsigned slot, const struct edmacc_param *param)
{
unsigned ctlr;
ctlr = EDMA_CTLR(slot);
slot = EDMA_CHAN_SLOT(slot);
if (slot >= edma_cc[ctlr]->num_slots)
return;
rt_memcpy((void *)(edmacc_regs_base[ctlr] + PARM_OFFSET(slot)), param,
PARM_SIZE);
}
/**
* edma_read_slot - read parameter RAM data from slot
* @slot: number of parameter RAM slot being copied
* @param: where to store copy of parameter RAM data
*
* Use this to read data from a parameter RAM slot, perhaps to
* save them as a template for later reuse.
*/
void edma_read_slot(unsigned slot, struct edmacc_param *param)
{
unsigned ctlr;
ctlr = EDMA_CTLR(slot);
slot = EDMA_CHAN_SLOT(slot);
if (slot >= edma_cc[ctlr]->num_slots)
return;
rt_memcpy(param, (void *)(edmacc_regs_base[ctlr] + PARM_OFFSET(slot)),
PARM_SIZE);
}
/*-----------------------------------------------------------------------*/
/* Various EDMA channel control operations */
/**
* edma_pause - pause dma on a channel
* @channel: on which edma_start() has been called
*
* This temporarily disables EDMA hardware events on the specified channel,
* preventing them from triggering new transfers on its behalf
*/
void edma_pause(unsigned channel)
{
unsigned ctlr;
ctlr = EDMA_CTLR(channel);
channel = EDMA_CHAN_SLOT(channel);
if (channel < edma_cc[ctlr]->num_channels) {
unsigned int mask = BIT(channel & 0x1f);
edma_shadow0_write_array(ctlr, SH_EECR, channel >> 5, mask);
}
}
/**
* edma_resume - resumes dma on a paused channel
* @channel: on which edma_pause() has been called
*
* This re-enables EDMA hardware events on the specified channel.
*/
void edma_resume(unsigned channel)
{
unsigned ctlr;
ctlr = EDMA_CTLR(channel);
channel = EDMA_CHAN_SLOT(channel);
if (channel < edma_cc[ctlr]->num_channels) {
unsigned int mask = BIT(channel & 0x1f);
edma_shadow0_write_array(ctlr, SH_EESR, channel >> 5, mask);
}
}
/**
* edma_start - start dma on a channel
* @channel: channel being activated
*
* Channels with event associations will be triggered by their hardware
* events, and channels without such associations will be triggered by
* software. (At this writing there is no interface for using software
* triggers except with channels that don't support hardware triggers.)
*
* Returns zero on success, else negative errno.
*/
int edma_start(unsigned channel)
{
unsigned ctlr;
ctlr = EDMA_CTLR(channel);
channel = EDMA_CHAN_SLOT(channel);
if (channel < edma_cc[ctlr]->num_channels) {
int j = channel >> 5;
unsigned int mask = BIT(channel & 0x1f);
/* EDMA channels without event association */
if (test_bit(channel, edma_cc[ctlr]->edma_unused)) {
edma_dbg("EDMA: ESR%d %08x\n", j,
edma_shadow0_read_array(ctlr, SH_ESR, j));
edma_shadow0_write_array(ctlr, SH_ESR, j, mask);
return 0;
}
/* EDMA channel with event association */
edma_dbg("EDMA: ER%d %08x\n", j,
edma_shadow0_read_array(ctlr, SH_ER, j));
/* Clear any pending event or error */
edma_write_array(ctlr, EDMA_ECR, j, mask);
edma_write_array(ctlr, EDMA_EMCR, j, mask);
/* Clear any SER */
edma_shadow0_write_array(ctlr, SH_SECR, j, mask);
edma_shadow0_write_array(ctlr, SH_EESR, j, mask);
edma_dbg("EDMA: EER%d %08x\n", j,
edma_shadow0_read_array(ctlr, SH_EER, j));
return 0;
}
return -RT_ERROR;
}
/**
* edma_stop - stops dma on the channel passed
* @channel: channel being deactivated
*
* When @lch is a channel, any active transfer is paused and
* all pending hardware events are cleared. The current transfer
* may not be resumed, and the channel's Parameter RAM should be
* reinitialized before being reused.
*/
void edma_stop(unsigned channel)
{
unsigned ctlr;
ctlr = EDMA_CTLR(channel);
channel = EDMA_CHAN_SLOT(channel);
if (channel < edma_cc[ctlr]->num_channels) {
int j = channel >> 5;
unsigned int mask = BIT(channel & 0x1f);
edma_shadow0_write_array(ctlr, SH_EECR, j, mask);
edma_shadow0_write_array(ctlr, SH_ECR, j, mask);
edma_shadow0_write_array(ctlr, SH_SECR, j, mask);
edma_write_array(ctlr, EDMA_EMCR, j, mask);
edma_dbg("EDMA: EER%d %08x\n", j,
edma_shadow0_read_array(ctlr, SH_EER, j));
/* REVISIT: consider guarding against inappropriate event
* chaining by overwriting with dummy_paramset.
*/
}
}
/******************************************************************************
*
* It cleans ParamEntry qand bring back EDMA to initial state if media has
* been removed before EDMA has finished.It is usedful for removable media.
* Arguments:
* ch_no - channel no
*
* Return: zero on success, or corresponding error no on failure
*
* FIXME this should not be needed ... edma_stop() should suffice.
*
*****************************************************************************/
void edma_clean_channel(unsigned channel)
{
unsigned ctlr;
ctlr = EDMA_CTLR(channel);
channel = EDMA_CHAN_SLOT(channel);
if (channel < edma_cc[ctlr]->num_channels) {
int j = (channel >> 5);
unsigned int mask = BIT(channel & 0x1f);
edma_dbg("EDMA: EMR%d %08x\n", j,
edma_read_array(ctlr, EDMA_EMR, j));
edma_shadow0_write_array(ctlr, SH_ECR, j, mask);
/* Clear the corresponding EMR bits */
edma_write_array(ctlr, EDMA_EMCR, j, mask);
/* Clear any SER */
edma_shadow0_write_array(ctlr, SH_SECR, j, mask);
edma_write(ctlr, EDMA_CCERRCLR, BIT(16) | BIT(1) | BIT(0));
}
}
/*
* edma_clear_event - clear an outstanding event on the DMA channel
* Arguments:
* channel - channel number
*/
void edma_clear_event(unsigned channel)
{
unsigned ctlr;
ctlr = EDMA_CTLR(channel);
channel = EDMA_CHAN_SLOT(channel);
if (channel >= edma_cc[ctlr]->num_channels)
return;
if (channel < 32)
edma_write(ctlr, EDMA_ECR, BIT(channel));
else
edma_write(ctlr, EDMA_ECRH, BIT(channel - 32));
}
/*-----------------------------------------------------------------------*/
int edma_init(struct edma_soc_info **info)
{
//struct edma_soc_info **info = pdev->dev.platform_data;
const rt_int8_t (*queue_priority_mapping)[2];
const rt_int8_t (*queue_tc_mapping)[2];
int i, j, off, ln, found = 0;
int status = -1;
const rt_int16_t (*rsv_chans)[2];
const rt_int16_t (*rsv_slots)[2];
int irq[EDMA_MAX_CC] = {0, 0};
int err_irq[EDMA_MAX_CC] = {0, 0};
RT_ASSERT(info != RT_NULL);
psc_change_state(DAVINCI_DM365_LPSC_TPCC, PSC_ENABLE);
psc_change_state(DAVINCI_DM365_LPSC_TPTC0, PSC_ENABLE);
psc_change_state(DAVINCI_DM365_LPSC_TPTC1, PSC_ENABLE);
psc_change_state(DAVINCI_DM365_LPSC_TPTC2, PSC_ENABLE);
psc_change_state(DAVINCI_DM365_LPSC_TPTC3, PSC_ENABLE);
edmacc_regs_base[0] = (void *)EDMA_CC0_BASE_REG;
edma_cc[0] = rt_malloc(sizeof(struct edma));
if (!edma_cc[0]) {
status = -RT_ENOMEM;
goto fail1;
}
rt_memset(edma_cc[0], 0, sizeof(struct edma));
edma_cc[0]->num_channels = min_t(unsigned, info[0]->n_channel,
EDMA_MAX_DMACH);
edma_cc[0]->num_slots = min_t(unsigned, info[0]->n_slot,
EDMA_MAX_PARAMENTRY);
edma_cc[0]->num_cc = min_t(unsigned, info[0]->n_cc,
EDMA_MAX_CC);
edma_cc[0]->default_queue = info[0]->default_queue;
if (!edma_cc[0]->default_queue)
edma_cc[0]->default_queue = EVENTQ_1;
edma_dbg("DMA REG BASE ADDR=%p\n",
edmacc_regs_base[j]);
for (i = 0; i < edma_cc[0]->num_slots; i++)
rt_memcpy((void *)(edmacc_regs_base[0] + PARM_OFFSET(i)),
&dummy_paramset, PARM_SIZE);
/* Mark all channels as unused */
rt_memset(edma_cc[0]->edma_unused, 0xff,
sizeof(edma_cc[0]->edma_unused));
edma_cc[0]->irq_res_start = IRQ_CCINT0;
rt_hw_interrupt_install(IRQ_CCINT0, dma_irq_handler, RT_NULL, "edma");
rt_hw_interrupt_umask(IRQ_CCINT0);
edma_cc[0]->irq_res_end = IRQ_CCERRINT;
rt_hw_interrupt_install(IRQ_CCERRINT, dma_ccerr_handler, RT_NULL, "edma_error");
rt_hw_interrupt_umask(IRQ_CCERRINT);
/* Everything lives on transfer controller 1 until otherwise
* specified. This way, long transfers on the low priority queue
* started by the codec engine will not cause audio defects.
*/
for (i = 0; i < edma_cc[0]->num_channels; i++)
map_dmach_queue(0, i, EVENTQ_1);
queue_tc_mapping = info[0]->queue_tc_mapping;
queue_priority_mapping = info[0]->queue_priority_mapping;
/* Event queue to TC mapping */
for (i = 0; queue_tc_mapping[i][0] != -1; i++)
map_queue_tc(0, queue_tc_mapping[i][0],
queue_tc_mapping[i][1]);
/* Event queue priority mapping */
for (i = 0; queue_priority_mapping[i][0] != -1; i++)
assign_priority_to_queue(0,
queue_priority_mapping[i][0],
queue_priority_mapping[i][1]);
/* Map the channel to param entry if channel mapping logic
* exist
*/
if (edma_read(0, EDMA_CCCFG) & CHMAP_EXIST)
map_dmach_param(0);
for (i = 0; i < info[0]->n_region; i++) {
edma_write_array2(0, EDMA_DRAE, i, 0, 0x0);
edma_write_array2(0, EDMA_DRAE, i, 1, 0x0);
edma_write_array(0, EDMA_QRAE, i, 0x0);
}
arch_num_cc++;
if (tc_errs_handled) {
rt_hw_interrupt_install(IRQ_TCERRINT0, dma_tc0err_handler, "edma_tc0");
rt_hw_interrupt_umask(IRQ_TCERRINT0);
rt_hw_interrupt_install(IRQ_TCERRINT, dma_tc1err_handler, "edma_tc1");
rt_hw_interrupt_umask(IRQ_TCERRINT);
}
return 0;
fail:
fail1:
rt_free(edma_cc[0]);
return status;
}