rtt-f030/bsp/imxrt1052-evk/Libraries/drivers/fsl_snvs_hp.c

533 lines
16 KiB
C
Raw Normal View History

2017-10-26 15:39:32 +08:00
/*
* Copyright (c) 2017, Freescale Semiconductor, Inc.
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without modification,
* are permitted provided that the following conditions are met:
*
* o Redistributions of source code must retain the above copyright notice, this list
* of conditions and the following disclaimer.
*
* o Redistributions in binary form must reproduce the above copyright notice, this
* list of conditions and the following disclaimer in the documentation and/or
* other materials provided with the distribution.
*
* o Neither the name of Freescale Semiconductor, Inc. nor the names of its
* contributors may be used to endorse or promote products derived from this
* software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
* WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
* DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR
* ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
* (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON
* ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
* SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
* Copyright (c) 2017, NXP Semiconductors, Inc.
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without modification,
* are permitted provided that the following conditions are met:
*
* o Redistributions of source code must retain the above copyright notice, this list
* of conditions and the following disclaimer.
*
* o Redistributions in binary form must reproduce the above copyright notice, this
* list of conditions and the following disclaimer in the documentation and/or
* other materials provided with the distribution.
*
* o Neither the name of Freescale Semiconductor, Inc. nor the names of its
* contributors may be used to endorse or promote products derived from this
* software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
* WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
* DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR
* ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
* (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON
* ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
* SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#include "fsl_snvs_hp.h"
/*******************************************************************************
* Definitions
******************************************************************************/
#define SECONDS_IN_A_DAY (86400U)
#define SECONDS_IN_A_HOUR (3600U)
#define SECONDS_IN_A_MINUTE (60U)
#define DAYS_IN_A_YEAR (365U)
#define YEAR_RANGE_START (1970U)
#define YEAR_RANGE_END (2099U)
#if !(defined(SNVS_HPCOMR_SW_SV_MASK))
#define SNVS_HPCOMR_SW_SV_MASK (0x100U)
#endif
#if !(defined(SNVS_HPSR_PI_MASK))
#define SNVS_HPSR_PI_MASK (0x2U)
#endif
#if !(defined(SNVS_HPSR_HPTA_MASK))
#define SNVS_HPSR_HPTA_MASK (0x1U)
#endif
/*******************************************************************************
* Prototypes
******************************************************************************/
/*!
* @brief Checks whether the date and time passed in is valid
*
* @param datetime Pointer to structure where the date and time details are stored
*
* @return Returns false if the date & time details are out of range; true if in range
*/
static bool SNVS_HP_CheckDatetimeFormat(const snvs_hp_rtc_datetime_t *datetime);
/*!
* @brief Converts time data from datetime to seconds
*
* @param datetime Pointer to datetime structure where the date and time details are stored
*
* @return The result of the conversion in seconds
*/
static uint32_t SNVS_HP_ConvertDatetimeToSeconds(const snvs_hp_rtc_datetime_t *datetime);
/*!
* @brief Converts time data from seconds to a datetime structure
*
* @param seconds Seconds value that needs to be converted to datetime format
* @param datetime Pointer to the datetime structure where the result of the conversion is stored
*/
static void SNVS_HP_ConvertSecondsToDatetime(uint32_t seconds, snvs_hp_rtc_datetime_t *datetime);
/*!
* @brief Returns RTC time in seconds.
*
* This function is used internally to get actual RTC time in seconds.
*
* @param base SNVS peripheral base address
*
* @return RTC time in seconds
*/
static uint32_t SNVS_HP_RTC_GetSeconds(SNVS_Type *base);
#if (!(defined(FSL_SDK_DISABLE_DRIVER_CLOCK_CONTROL) && FSL_SDK_DISABLE_DRIVER_CLOCK_CONTROL) && \
defined(SNVS_HP_CLOCKS))
/*!
* @brief Get the SNVS instance from peripheral base address.
*
* @param base SNVS peripheral base address.
*
* @return SNVS instance.
*/
static uint32_t SNVS_HP_GetInstance(SNVS_Type *base);
#endif /* FSL_SDK_DISABLE_DRIVER_CLOCK_CONTROL */
/*******************************************************************************
* Variables
******************************************************************************/
#if (!(defined(FSL_SDK_DISABLE_DRIVER_CLOCK_CONTROL) && FSL_SDK_DISABLE_DRIVER_CLOCK_CONTROL) && \
defined(SNVS_HP_CLOCKS))
/*! @brief Pointer to snvs_hp clock. */
const clock_ip_name_t s_snvsHpClock[] = SNVS_HP_CLOCKS;
#endif /* FSL_SDK_DISABLE_DRIVER_CLOCK_CONTROL */
/*******************************************************************************
* Code
******************************************************************************/
static bool SNVS_HP_CheckDatetimeFormat(const snvs_hp_rtc_datetime_t *datetime)
{
assert(datetime);
/* Table of days in a month for a non leap year. First entry in the table is not used,
* valid months start from 1
*/
uint8_t daysPerMonth[] = {0U, 31U, 28U, 31U, 30U, 31U, 30U, 31U, 31U, 30U, 31U, 30U, 31U};
/* Check year, month, hour, minute, seconds */
if ((datetime->year < YEAR_RANGE_START) || (datetime->year > YEAR_RANGE_END) || (datetime->month > 12U) ||
(datetime->month < 1U) || (datetime->hour >= 24U) || (datetime->minute >= 60U) || (datetime->second >= 60U))
{
/* If not correct then error*/
return false;
}
/* Adjust the days in February for a leap year */
if ((((datetime->year & 3U) == 0) && (datetime->year % 100 != 0)) || (datetime->year % 400 == 0))
{
daysPerMonth[2] = 29U;
}
/* Check the validity of the day */
if ((datetime->day > daysPerMonth[datetime->month]) || (datetime->day < 1U))
{
return false;
}
return true;
}
static uint32_t SNVS_HP_ConvertDatetimeToSeconds(const snvs_hp_rtc_datetime_t *datetime)
{
assert(datetime);
/* Number of days from begin of the non Leap-year*/
/* Number of days from begin of the non Leap-year*/
uint16_t monthDays[] = {0U, 0U, 31U, 59U, 90U, 120U, 151U, 181U, 212U, 243U, 273U, 304U, 334U};
uint32_t seconds;
/* Compute number of days from 1970 till given year*/
seconds = (datetime->year - 1970U) * DAYS_IN_A_YEAR;
/* Add leap year days */
seconds += ((datetime->year / 4) - (1970U / 4));
/* Add number of days till given month*/
seconds += monthDays[datetime->month];
/* Add days in given month. We subtract the current day as it is
* represented in the hours, minutes and seconds field*/
seconds += (datetime->day - 1);
/* For leap year if month less than or equal to Febraury, decrement day counter*/
if ((!(datetime->year & 3U)) && (datetime->month <= 2U))
{
seconds--;
}
seconds = (seconds * SECONDS_IN_A_DAY) + (datetime->hour * SECONDS_IN_A_HOUR) +
(datetime->minute * SECONDS_IN_A_MINUTE) + datetime->second;
return seconds;
}
static void SNVS_HP_ConvertSecondsToDatetime(uint32_t seconds, snvs_hp_rtc_datetime_t *datetime)
{
assert(datetime);
uint32_t x;
uint32_t secondsRemaining, days;
uint16_t daysInYear;
/* Table of days in a month for a non leap year. First entry in the table is not used,
* valid months start from 1
*/
uint8_t daysPerMonth[] = {0U, 31U, 28U, 31U, 30U, 31U, 30U, 31U, 31U, 30U, 31U, 30U, 31U};
/* Start with the seconds value that is passed in to be converted to date time format */
secondsRemaining = seconds;
/* Calcuate the number of days, we add 1 for the current day which is represented in the
* hours and seconds field
*/
days = secondsRemaining / SECONDS_IN_A_DAY + 1;
/* Update seconds left*/
secondsRemaining = secondsRemaining % SECONDS_IN_A_DAY;
/* Calculate the datetime hour, minute and second fields */
datetime->hour = secondsRemaining / SECONDS_IN_A_HOUR;
secondsRemaining = secondsRemaining % SECONDS_IN_A_HOUR;
datetime->minute = secondsRemaining / 60U;
datetime->second = secondsRemaining % SECONDS_IN_A_MINUTE;
/* Calculate year */
daysInYear = DAYS_IN_A_YEAR;
datetime->year = YEAR_RANGE_START;
while (days > daysInYear)
{
/* Decrease day count by a year and increment year by 1 */
days -= daysInYear;
datetime->year++;
/* Adjust the number of days for a leap year */
if (datetime->year & 3U)
{
daysInYear = DAYS_IN_A_YEAR;
}
else
{
daysInYear = DAYS_IN_A_YEAR + 1;
}
}
/* Adjust the days in February for a leap year */
if (!(datetime->year & 3U))
{
daysPerMonth[2] = 29U;
}
for (x = 1U; x <= 12U; x++)
{
if (days <= daysPerMonth[x])
{
datetime->month = x;
break;
}
else
{
days -= daysPerMonth[x];
}
}
datetime->day = days;
}
#if (!(defined(FSL_SDK_DISABLE_DRIVER_CLOCK_CONTROL) && FSL_SDK_DISABLE_DRIVER_CLOCK_CONTROL) && \
defined(SNVS_HP_CLOCKS))
static uint32_t SNVS_HP_GetInstance(SNVS_Type *base)
{
return 0U;
}
#endif /* FSL_SDK_DISABLE_DRIVER_CLOCK_CONTROL */
void SNVS_HP_RTC_Init(SNVS_Type *base, const snvs_hp_rtc_config_t *config)
{
assert(config);
#if (!(defined(FSL_SDK_DISABLE_DRIVER_CLOCK_CONTROL) && FSL_SDK_DISABLE_DRIVER_CLOCK_CONTROL) && \
defined(SNVS_HP_CLOCKS))
uint32_t instance = SNVS_HP_GetInstance(base);
CLOCK_EnableClock(s_snvsHpClock[instance]);
#endif /* FSL_SDK_DISABLE_DRIVER_CLOCK_CONTROL */
base->HPCOMR |= SNVS_HPCOMR_NPSWA_EN_MASK | SNVS_HPCOMR_SW_SV_MASK;
base->HPCR = SNVS_HPCR_PI_FREQ(config->periodicInterruptFreq);
if (config->rtcCalEnable)
{
base->HPCR = SNVS_HPCR_HPCALB_VAL_MASK & (config->rtcCalValue << SNVS_HPCR_HPCALB_VAL_SHIFT);
base->HPCR |= SNVS_HPCR_HPCALB_EN_MASK;
}
}
void SNVS_HP_RTC_Deinit(SNVS_Type *base)
{
base->HPCR &= ~SNVS_HPCR_RTC_EN_MASK;
#if (!(defined(FSL_SDK_DISABLE_DRIVER_CLOCK_CONTROL) && FSL_SDK_DISABLE_DRIVER_CLOCK_CONTROL) && \
defined(SNVS_HP_CLOCKS))
uint32_t instance = SNVS_HP_GetInstance(base);
CLOCK_DisableClock(s_snvsHpClock[instance]);
#endif /* FSL_SDK_DISABLE_DRIVER_CLOCK_CONTROL */
}
void SNVS_HP_RTC_GetDefaultConfig(snvs_hp_rtc_config_t *config)
{
assert(config);
config->rtcCalEnable = false;
config->rtcCalValue = 0U;
config->periodicInterruptFreq = 0U;
}
static uint32_t SNVS_HP_RTC_GetSeconds(SNVS_Type *base)
{
uint32_t seconds = 0;
uint32_t tmp = 0;
/* Do consecutive reads until value is correct */
do
{
seconds = tmp;
tmp = (base->HPRTCMR << 17U) | (base->HPRTCLR >> 15U);
} while (tmp != seconds);
return seconds;
}
status_t SNVS_HP_RTC_SetDatetime(SNVS_Type *base, const snvs_hp_rtc_datetime_t *datetime)
{
assert(datetime);
uint32_t seconds = 0U;
uint32_t tmp = base->HPCR;
/* disable RTC */
SNVS_HP_RTC_StopTimer(base);
/* Return error if the time provided is not valid */
if (!(SNVS_HP_CheckDatetimeFormat(datetime)))
{
return kStatus_InvalidArgument;
}
/* Set time in seconds */
seconds = SNVS_HP_ConvertDatetimeToSeconds(datetime);
base->HPRTCMR = (uint32_t)(seconds >> 17U);
base->HPRTCLR = (uint32_t)(seconds << 15U);
/* reenable RTC in case that it was enabled before */
if (tmp & SNVS_HPCR_RTC_EN_MASK)
{
SNVS_HP_RTC_StartTimer(base);
}
return kStatus_Success;
}
void SNVS_HP_RTC_GetDatetime(SNVS_Type *base, snvs_hp_rtc_datetime_t *datetime)
{
assert(datetime);
SNVS_HP_ConvertSecondsToDatetime(SNVS_HP_RTC_GetSeconds(base), datetime);
}
status_t SNVS_HP_RTC_SetAlarm(SNVS_Type *base, const snvs_hp_rtc_datetime_t *alarmTime)
{
assert(alarmTime);
uint32_t alarmSeconds = 0U;
uint32_t currSeconds = 0U;
uint32_t tmp = base->HPCR;
/* Return error if the alarm time provided is not valid */
if (!(SNVS_HP_CheckDatetimeFormat(alarmTime)))
{
return kStatus_InvalidArgument;
}
alarmSeconds = SNVS_HP_ConvertDatetimeToSeconds(alarmTime);
currSeconds = SNVS_HP_RTC_GetSeconds(base);
/* Return error if the alarm time has passed */
if (alarmSeconds < currSeconds)
{
return kStatus_Fail;
}
/* disable RTC alarm interrupt */
base->HPCR &= ~SNVS_HPCR_HPTA_EN_MASK;
while (base->HPCR & SNVS_HPCR_HPTA_EN_MASK)
{
}
/* Set alarm in seconds*/
base->HPTAMR = (uint32_t)(alarmSeconds >> 17U);
base->HPTALR = (uint32_t)(alarmSeconds << 15U);
/* reenable RTC alarm interrupt in case that it was enabled before */
base->HPCR = tmp;
return kStatus_Success;
}
void SNVS_HP_RTC_GetAlarm(SNVS_Type *base, snvs_hp_rtc_datetime_t *datetime)
{
assert(datetime);
uint32_t alarmSeconds = 0U;
/* Get alarm in seconds */
alarmSeconds = (base->HPTAMR << 17U) | (base->HPTALR >> 15U);
SNVS_HP_ConvertSecondsToDatetime(alarmSeconds, datetime);
}
#if (defined(FSL_FEATURE_SNVS_HAS_SRTC) && (FSL_FEATURE_SNVS_HAS_SRTC > 0))
void SNVS_HP_RTC_TimeSynchronize(SNVS_Type *base)
{
uint32_t tmp = base->HPCR;
/* disable RTC */
SNVS_HP_RTC_StopTimer(base);
base->HPCR |= SNVS_HPCR_HP_TS_MASK;
/* reenable RTC in case that it was enabled before */
if (tmp & SNVS_HPCR_RTC_EN_MASK)
{
SNVS_HP_RTC_StartTimer(base);
}
}
#endif /* FSL_FEATURE_SNVS_HAS_SRTC */
uint32_t SNVS_HP_RTC_GetStatusFlags(SNVS_Type *base)
{
uint32_t flags = 0U;
if (base->HPSR & SNVS_HPSR_PI_MASK)
{
flags |= kSNVS_RTC_PeriodicInterruptFlag;
}
if (base->HPSR & SNVS_HPSR_HPTA_MASK)
{
flags |= kSNVS_RTC_AlarmInterruptFlag;
}
return flags;
}
void SNVS_HP_RTC_ClearStatusFlags(SNVS_Type *base, uint32_t mask)
{
uint32_t wrMask = 0U;
if (mask & kSNVS_RTC_PeriodicInterruptFlag)
{
wrMask |= SNVS_HPSR_PI_MASK;
}
if (mask & kSNVS_RTC_AlarmInterruptFlag)
{
wrMask |= SNVS_HPSR_HPTA_MASK;
}
base->HPSR |= wrMask;
}
void SNVS_HP_RTC_EnableInterrupts(SNVS_Type *base, uint32_t mask)
{
uint32_t wrMask = 0U;
if (mask & kSNVS_RTC_PeriodicInterruptEnable)
{
wrMask |= SNVS_HPCR_PI_EN_MASK;
}
if (mask & kSNVS_RTC_AlarmInterruptEnable)
{
wrMask |= SNVS_HPCR_HPTA_EN_MASK;
}
base->HPCR |= wrMask;
}
void SNVS_HP_RTC_DisableInterrupts(SNVS_Type *base, uint32_t mask)
{
uint32_t wrMask = 0U;
if (mask & kSNVS_RTC_PeriodicInterruptEnable)
{
wrMask |= SNVS_HPCR_PI_EN_MASK;
}
if (mask & kSNVS_RTC_AlarmInterruptEnable)
{
wrMask |= SNVS_HPCR_HPTA_EN_MASK;
}
base->HPCR &= ~wrMask;
}
uint32_t SNVS_HP_RTC_GetEnabledInterrupts(SNVS_Type *base)
{
uint32_t val = 0U;
if (base->HPCR & SNVS_HPCR_PI_EN_MASK)
{
val |= kSNVS_RTC_PeriodicInterruptFlag;
}
if (base->HPCR & SNVS_HPCR_HPTA_EN_MASK)
{
val |= kSNVS_RTC_AlarmInterruptFlag;
}
return val;
}