1862 lines
58 KiB
C
Raw Normal View History

2017-10-26 15:39:32 +08:00
/*
* Copyright (c) 2015, Freescale Semiconductor, Inc.
* Copyright 2016-2017 NXP
*
* Redistribution and use in source and binary forms, with or without modification,
* are permitted provided that the following conditions are met:
*
* o Redistributions of source code must retain the above copyright notice, this list
* of conditions and the following disclaimer.
*
* o Redistributions in binary form must reproduce the above copyright notice, this
* list of conditions and the following disclaimer in the documentation and/or
* other materials provided with the distribution.
*
* o Neither the name of the copyright holder nor the names of its
* contributors may be used to endorse or promote products derived from this
* software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
* WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
* DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR
* ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
* (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON
* ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
* SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#include "fsl_lpi2c.h"
#include <stdlib.h>
#include <string.h>
/*******************************************************************************
* Definitions
******************************************************************************/
/*! @brief Common sets of flags used by the driver. */
enum _lpi2c_flag_constants
{
/*! All flags which are cleared by the driver upon starting a transfer. */
kMasterClearFlags = kLPI2C_MasterEndOfPacketFlag | kLPI2C_MasterStopDetectFlag | kLPI2C_MasterNackDetectFlag |
kLPI2C_MasterArbitrationLostFlag | kLPI2C_MasterFifoErrFlag | kLPI2C_MasterPinLowTimeoutFlag |
kLPI2C_MasterDataMatchFlag,
/*! IRQ sources enabled by the non-blocking transactional API. */
kMasterIrqFlags = kLPI2C_MasterArbitrationLostFlag | kLPI2C_MasterTxReadyFlag | kLPI2C_MasterRxReadyFlag |
kLPI2C_MasterStopDetectFlag | kLPI2C_MasterNackDetectFlag | kLPI2C_MasterPinLowTimeoutFlag |
kLPI2C_MasterFifoErrFlag,
/*! Errors to check for. */
kMasterErrorFlags = kLPI2C_MasterNackDetectFlag | kLPI2C_MasterArbitrationLostFlag | kLPI2C_MasterFifoErrFlag |
kLPI2C_MasterPinLowTimeoutFlag,
/*! All flags which are cleared by the driver upon starting a transfer. */
kSlaveClearFlags = kLPI2C_SlaveRepeatedStartDetectFlag | kLPI2C_SlaveStopDetectFlag | kLPI2C_SlaveBitErrFlag |
kLPI2C_SlaveFifoErrFlag,
/*! IRQ sources enabled by the non-blocking transactional API. */
kSlaveIrqFlags = kLPI2C_SlaveTxReadyFlag | kLPI2C_SlaveRxReadyFlag | kLPI2C_SlaveStopDetectFlag |
kLPI2C_SlaveRepeatedStartDetectFlag | kLPI2C_SlaveFifoErrFlag | kLPI2C_SlaveBitErrFlag |
kLPI2C_SlaveTransmitAckFlag | kLPI2C_SlaveAddressValidFlag,
/*! Errors to check for. */
kSlaveErrorFlags = kLPI2C_SlaveFifoErrFlag | kLPI2C_SlaveBitErrFlag,
};
/* ! @brief LPI2C master fifo commands. */
enum _lpi2c_master_fifo_cmd
{
kTxDataCmd = LPI2C_MTDR_CMD(0x0U), /*!< Transmit DATA[7:0] */
kRxDataCmd = LPI2C_MTDR_CMD(0X1U), /*!< Receive (DATA[7:0] + 1) bytes */
kStopCmd = LPI2C_MTDR_CMD(0x2U), /*!< Generate STOP condition */
kStartCmd = LPI2C_MTDR_CMD(0x4U), /*!< Generate(repeated) START and transmit address in DATA[[7:0] */
};
/*!
* @brief Default watermark values.
*
* The default watermarks are set to zero.
*/
enum _lpi2c_default_watermarks
{
kDefaultTxWatermark = 0,
kDefaultRxWatermark = 0,
};
/*! @brief States for the state machine used by transactional APIs. */
enum _lpi2c_transfer_states
{
kIdleState = 0,
kSendCommandState,
kIssueReadCommandState,
kTransferDataState,
kStopState,
kWaitForCompletionState,
};
/*! @brief Typedef for master interrupt handler. */
typedef void (*lpi2c_master_isr_t)(LPI2C_Type *base, lpi2c_master_handle_t *handle);
/*! @brief Typedef for slave interrupt handler. */
typedef void (*lpi2c_slave_isr_t)(LPI2C_Type *base, lpi2c_slave_handle_t *handle);
/*******************************************************************************
* Prototypes
******************************************************************************/
/* Not static so it can be used from fsl_lpi2c_edma.c. */
uint32_t LPI2C_GetInstance(LPI2C_Type *base);
static uint32_t LPI2C_GetCyclesForWidth(uint32_t sourceClock_Hz,
uint32_t width_ns,
uint32_t maxCycles,
uint32_t prescaler);
/* Not static so it can be used from fsl_lpi2c_edma.c. */
status_t LPI2C_MasterCheckAndClearError(LPI2C_Type *base, uint32_t status);
static status_t LPI2C_MasterWaitForTxReady(LPI2C_Type *base);
/* Not static so it can be used from fsl_lpi2c_edma.c. */
status_t LPI2C_CheckForBusyBus(LPI2C_Type *base);
static status_t LPI2C_RunTransferStateMachine(LPI2C_Type *base, lpi2c_master_handle_t *handle, bool *isDone);
static void LPI2C_InitTransferStateMachine(lpi2c_master_handle_t *handle);
static status_t LPI2C_SlaveCheckAndClearError(LPI2C_Type *base, uint32_t flags);
static void LPI2C_CommonIRQHandler(LPI2C_Type *base, uint32_t instance);
/*******************************************************************************
* Variables
******************************************************************************/
/*! @brief Array to map LPI2C instance number to base pointer. */
static LPI2C_Type *const kLpi2cBases[] = LPI2C_BASE_PTRS;
/*! @brief Array to map LPI2C instance number to IRQ number. */
static IRQn_Type const kLpi2cIrqs[] = LPI2C_IRQS;
#if !(defined(FSL_SDK_DISABLE_DRIVER_CLOCK_CONTROL) && FSL_SDK_DISABLE_DRIVER_CLOCK_CONTROL)
/*! @brief Array to map LPI2C instance number to clock gate enum. */
static clock_ip_name_t const kLpi2cClocks[] = LPI2C_CLOCKS;
#if defined(LPI2C_PERIPH_CLOCKS)
/*! @brief Array to map LPI2C instance number to pheripheral clock gate enum. */
static const clock_ip_name_t kLpi2cPeriphClocks[] = LPI2C_PERIPH_CLOCKS;
#endif
#endif /* FSL_SDK_DISABLE_DRIVER_CLOCK_CONTROL */
/*! @brief Pointer to master IRQ handler for each instance. */
static lpi2c_master_isr_t s_lpi2cMasterIsr;
/*! @brief Pointers to master handles for each instance. */
static lpi2c_master_handle_t *s_lpi2cMasterHandle[FSL_FEATURE_SOC_LPI2C_COUNT];
/*! @brief Pointer to slave IRQ handler for each instance. */
static lpi2c_slave_isr_t s_lpi2cSlaveIsr;
/*! @brief Pointers to slave handles for each instance. */
static lpi2c_slave_handle_t *s_lpi2cSlaveHandle[FSL_FEATURE_SOC_LPI2C_COUNT];
/*******************************************************************************
* Code
******************************************************************************/
/*!
* @brief Returns an instance number given a base address.
*
* If an invalid base address is passed, debug builds will assert. Release builds will just return
* instance number 0.
*
* @param base The LPI2C peripheral base address.
* @return LPI2C instance number starting from 0.
*/
uint32_t LPI2C_GetInstance(LPI2C_Type *base)
{
uint32_t instance;
for (instance = 0; instance < ARRAY_SIZE(kLpi2cBases); ++instance)
{
if (kLpi2cBases[instance] == base)
{
return instance;
}
}
assert(false);
return 0;
}
/*!
* @brief Computes a cycle count for a given time in nanoseconds.
* @param sourceClock_Hz LPI2C functional clock frequency in Hertz.
* @param width_ns Desired with in nanoseconds.
* @param maxCycles Maximum cycle count, determined by the number of bits wide the cycle count field is.
* @param prescaler LPI2C prescaler setting. Pass 1 if the prescaler should not be used, as for slave glitch widths.
*/
static uint32_t LPI2C_GetCyclesForWidth(uint32_t sourceClock_Hz,
uint32_t width_ns,
uint32_t maxCycles,
uint32_t prescaler)
{
uint32_t busCycle_ns = 1000000 / (sourceClock_Hz / prescaler / 1000);
uint32_t cycles = 0;
/* Search for the cycle count just below the desired glitch width. */
while ((((cycles + 1) * busCycle_ns) < width_ns) && (cycles + 1 < maxCycles))
{
++cycles;
}
/* If we end up with zero cycles, then set the filter to a single cycle unless the */
/* bus clock is greater than 10x the desired glitch width. */
if ((cycles == 0) && (busCycle_ns <= (width_ns * 10)))
{
cycles = 1;
}
return cycles;
}
/*!
* @brief Convert provided flags to status code, and clear any errors if present.
* @param base The LPI2C peripheral base address.
* @param status Current status flags value that will be checked.
* @retval #kStatus_Success
* @retval #kStatus_LPI2C_PinLowTimeout
* @retval #kStatus_LPI2C_ArbitrationLost
* @retval #kStatus_LPI2C_Nak
* @retval #kStatus_LPI2C_FifoError
*/
status_t LPI2C_MasterCheckAndClearError(LPI2C_Type *base, uint32_t status)
{
status_t result = kStatus_Success;
/* Check for error. These errors cause a stop to automatically be sent. We must */
/* clear the errors before a new transfer can start. */
status &= kMasterErrorFlags;
if (status)
{
/* Select the correct error code. Ordered by severity, with bus issues first. */
if (status & kLPI2C_MasterPinLowTimeoutFlag)
{
result = kStatus_LPI2C_PinLowTimeout;
}
else if (status & kLPI2C_MasterArbitrationLostFlag)
{
result = kStatus_LPI2C_ArbitrationLost;
}
else if (status & kLPI2C_MasterNackDetectFlag)
{
result = kStatus_LPI2C_Nak;
}
else if (status & kLPI2C_MasterFifoErrFlag)
{
result = kStatus_LPI2C_FifoError;
}
else
{
assert(false);
}
/* Clear the flags. */
LPI2C_MasterClearStatusFlags(base, status);
/* Reset fifos. These flags clear automatically. */
base->MCR |= LPI2C_MCR_RRF_MASK | LPI2C_MCR_RTF_MASK;
}
return result;
}
/*!
* @brief Wait until there is room in the tx fifo.
* @param base The LPI2C peripheral base address.
* @retval #kStatus_Success
* @retval #kStatus_LPI2C_PinLowTimeout
* @retval #kStatus_LPI2C_ArbitrationLost
* @retval #kStatus_LPI2C_Nak
* @retval #kStatus_LPI2C_FifoError
*/
static status_t LPI2C_MasterWaitForTxReady(LPI2C_Type *base)
{
uint32_t status;
size_t txCount;
size_t txFifoSize = FSL_FEATURE_LPI2C_FIFO_SIZEn(base);
#if LPI2C_WAIT_TIMEOUT
uint32_t waitTimes = LPI2C_WAIT_TIMEOUT;
#endif
do
{
status_t result;
/* Get the number of words in the tx fifo and compute empty slots. */
LPI2C_MasterGetFifoCounts(base, NULL, &txCount);
txCount = txFifoSize - txCount;
/* Check for error flags. */
status = LPI2C_MasterGetStatusFlags(base);
result = LPI2C_MasterCheckAndClearError(base, status);
if (result)
{
return result;
}
#if LPI2C_WAIT_TIMEOUT
} while ((!txCount) && (--waitTimes));
if (waitTimes == 0)
{
return kStatus_LPI2C_Timeout;
}
#else
} while (!txCount);
#endif
return kStatus_Success;
}
/*!
* @brief Make sure the bus isn't already busy.
*
* A busy bus is allowed if we are the one driving it.
*
* @param base The LPI2C peripheral base address.
* @retval #kStatus_Success
* @retval #kStatus_LPI2C_Busy
*/
status_t LPI2C_CheckForBusyBus(LPI2C_Type *base)
{
uint32_t status = LPI2C_MasterGetStatusFlags(base);
if ((status & kLPI2C_MasterBusBusyFlag) && (!(status & kLPI2C_MasterBusyFlag)))
{
return kStatus_LPI2C_Busy;
}
return kStatus_Success;
}
void LPI2C_MasterGetDefaultConfig(lpi2c_master_config_t *masterConfig)
{
masterConfig->enableMaster = true;
masterConfig->debugEnable = false;
masterConfig->enableDoze = true;
masterConfig->ignoreAck = false;
masterConfig->pinConfig = kLPI2C_2PinOpenDrain;
masterConfig->baudRate_Hz = 100000U;
masterConfig->busIdleTimeout_ns = 0;
masterConfig->pinLowTimeout_ns = 0;
masterConfig->sdaGlitchFilterWidth_ns = 0;
masterConfig->sclGlitchFilterWidth_ns = 0;
masterConfig->hostRequest.enable = false;
masterConfig->hostRequest.source = kLPI2C_HostRequestExternalPin;
masterConfig->hostRequest.polarity = kLPI2C_HostRequestPinActiveHigh;
}
void LPI2C_MasterInit(LPI2C_Type *base, const lpi2c_master_config_t *masterConfig, uint32_t sourceClock_Hz)
{
uint32_t prescaler;
uint32_t cycles;
uint32_t cfgr2;
uint32_t value;
#if !(defined(FSL_SDK_DISABLE_DRIVER_CLOCK_CONTROL) && FSL_SDK_DISABLE_DRIVER_CLOCK_CONTROL)
uint32_t instance = LPI2C_GetInstance(base);
/* Ungate the clock. */
CLOCK_EnableClock(kLpi2cClocks[instance]);
#if defined(LPI2C_PERIPH_CLOCKS)
/* Ungate the functional clock in initialize function. */
CLOCK_EnableClock(kLpi2cPeriphClocks[instance]);
#endif
#endif /* FSL_SDK_DISABLE_DRIVER_CLOCK_CONTROL */
/* Reset peripheral before configuring it. */
LPI2C_MasterReset(base);
/* Doze bit: 0 is enable, 1 is disable */
base->MCR = LPI2C_MCR_DBGEN(masterConfig->debugEnable) | LPI2C_MCR_DOZEN(!(masterConfig->enableDoze));
/* host request */
value = base->MCFGR0;
value &= (~(LPI2C_MCFGR0_HREN_MASK | LPI2C_MCFGR0_HRPOL_MASK | LPI2C_MCFGR0_HRSEL_MASK));
value |= LPI2C_MCFGR0_HREN(masterConfig->hostRequest.enable) |
LPI2C_MCFGR0_HRPOL(masterConfig->hostRequest.polarity) |
LPI2C_MCFGR0_HRSEL(masterConfig->hostRequest.source);
base->MCFGR0 = value;
/* pin config and ignore ack */
value = base->MCFGR1;
value &= ~(LPI2C_MCFGR1_PINCFG_MASK | LPI2C_MCFGR1_IGNACK_MASK);
value |= LPI2C_MCFGR1_PINCFG(masterConfig->pinConfig);
value |= LPI2C_MCFGR1_IGNACK(masterConfig->ignoreAck);
base->MCFGR1 = value;
LPI2C_MasterSetWatermarks(base, kDefaultTxWatermark, kDefaultRxWatermark);
LPI2C_MasterSetBaudRate(base, sourceClock_Hz, masterConfig->baudRate_Hz);
/* Configure glitch filters and bus idle and pin low timeouts. */
prescaler = (base->MCFGR1 & LPI2C_MCFGR1_PRESCALE_MASK) >> LPI2C_MCFGR1_PRESCALE_SHIFT;
cfgr2 = base->MCFGR2;
if (masterConfig->busIdleTimeout_ns)
{
cycles = LPI2C_GetCyclesForWidth(sourceClock_Hz, masterConfig->busIdleTimeout_ns,
(LPI2C_MCFGR2_BUSIDLE_MASK >> LPI2C_MCFGR2_BUSIDLE_SHIFT), prescaler);
cfgr2 &= ~LPI2C_MCFGR2_BUSIDLE_MASK;
cfgr2 |= LPI2C_MCFGR2_BUSIDLE(cycles);
}
if (masterConfig->sdaGlitchFilterWidth_ns)
{
cycles = LPI2C_GetCyclesForWidth(sourceClock_Hz, masterConfig->sdaGlitchFilterWidth_ns,
(LPI2C_MCFGR2_FILTSDA_MASK >> LPI2C_MCFGR2_FILTSDA_SHIFT), 1);
cfgr2 &= ~LPI2C_MCFGR2_FILTSDA_MASK;
cfgr2 |= LPI2C_MCFGR2_FILTSDA(cycles);
}
if (masterConfig->sclGlitchFilterWidth_ns)
{
cycles = LPI2C_GetCyclesForWidth(sourceClock_Hz, masterConfig->sclGlitchFilterWidth_ns,
(LPI2C_MCFGR2_FILTSCL_MASK >> LPI2C_MCFGR2_FILTSCL_SHIFT), 1);
cfgr2 &= ~LPI2C_MCFGR2_FILTSCL_MASK;
cfgr2 |= LPI2C_MCFGR2_FILTSCL(cycles);
}
base->MCFGR2 = cfgr2;
if (masterConfig->pinLowTimeout_ns)
{
cycles = LPI2C_GetCyclesForWidth(sourceClock_Hz, masterConfig->pinLowTimeout_ns / 256,
(LPI2C_MCFGR2_BUSIDLE_MASK >> LPI2C_MCFGR2_BUSIDLE_SHIFT), prescaler);
base->MCFGR3 = (base->MCFGR3 & ~LPI2C_MCFGR3_PINLOW_MASK) | LPI2C_MCFGR3_PINLOW(cycles);
}
LPI2C_MasterEnable(base, masterConfig->enableMaster);
}
void LPI2C_MasterDeinit(LPI2C_Type *base)
{
/* Restore to reset state. */
LPI2C_MasterReset(base);
#if !(defined(FSL_SDK_DISABLE_DRIVER_CLOCK_CONTROL) && FSL_SDK_DISABLE_DRIVER_CLOCK_CONTROL)
uint32_t instance = LPI2C_GetInstance(base);
/* Gate clock. */
CLOCK_DisableClock(kLpi2cClocks[instance]);
#if defined(LPI2C_PERIPH_CLOCKS)
/* Gate the functional clock. */
CLOCK_DisableClock(kLpi2cPeriphClocks[instance]);
#endif
#endif /* FSL_SDK_DISABLE_DRIVER_CLOCK_CONTROL */
}
void LPI2C_MasterConfigureDataMatch(LPI2C_Type *base, const lpi2c_data_match_config_t *config)
{
/* Disable master mode. */
bool wasEnabled = (base->MCR & LPI2C_MCR_MEN_MASK) >> LPI2C_MCR_MEN_SHIFT;
LPI2C_MasterEnable(base, false);
base->MCFGR1 = (base->MCFGR1 & ~LPI2C_MCFGR1_MATCFG_MASK) | LPI2C_MCFGR1_MATCFG(config->matchMode);
base->MCFGR0 = (base->MCFGR0 & ~LPI2C_MCFGR0_RDMO_MASK) | LPI2C_MCFGR0_RDMO(config->rxDataMatchOnly);
base->MDMR = LPI2C_MDMR_MATCH0(config->match0) | LPI2C_MDMR_MATCH1(config->match1);
/* Restore master mode. */
if (wasEnabled)
{
LPI2C_MasterEnable(base, true);
}
}
void LPI2C_MasterSetBaudRate(LPI2C_Type *base, uint32_t sourceClock_Hz, uint32_t baudRate_Hz)
{
uint32_t prescale = 0;
uint32_t bestPre = 0;
uint32_t bestClkHi = 0;
uint32_t absError = 0;
uint32_t bestError = 0xffffffffu;
uint32_t value;
uint32_t clkHiCycle;
uint32_t computedRate;
int i;
bool wasEnabled;
/* Disable master mode. */
wasEnabled = (base->MCR & LPI2C_MCR_MEN_MASK) >> LPI2C_MCR_MEN_SHIFT;
LPI2C_MasterEnable(base, false);
/* Baud rate = (sourceClock_Hz/2^prescale)/(CLKLO+1+CLKHI+1 + ROUNDDOWN((2+FILTSCL)/2^prescale) */
/* Assume CLKLO = 2*CLKHI, SETHOLD = CLKHI, DATAVD = CLKHI/2. */
for (prescale = 1; (prescale <= 128) && (bestError != 0); prescale = 2 * prescale)
{
for (clkHiCycle = 1; clkHiCycle < 32; clkHiCycle++)
{
if (clkHiCycle == 1)
{
computedRate = (sourceClock_Hz / prescale) / (1 + 3 + 2 + 2 / prescale);
}
else
{
computedRate = (sourceClock_Hz / prescale) / (3 * clkHiCycle + 2 + 2 / prescale);
}
absError = baudRate_Hz > computedRate ? baudRate_Hz - computedRate : computedRate - baudRate_Hz;
if (absError < bestError)
{
bestPre = prescale;
bestClkHi = clkHiCycle;
bestError = absError;
/* If the error is 0, then we can stop searching because we won't find a better match. */
if (absError == 0)
{
break;
}
}
}
}
/* Standard, fast, fast mode plus and ultra-fast transfers. */
value = LPI2C_MCCR0_CLKHI(bestClkHi);
if (bestClkHi < 2)
{
value |= LPI2C_MCCR0_CLKLO(3) | LPI2C_MCCR0_SETHOLD(2) | LPI2C_MCCR0_DATAVD(1);
}
else
{
value |= LPI2C_MCCR0_CLKLO(2 * bestClkHi) | LPI2C_MCCR0_SETHOLD(bestClkHi) | LPI2C_MCCR0_DATAVD(bestClkHi / 2);
}
base->MCCR0 = value;
for (i = 0; i < 8; i++)
{
if (bestPre == (1U << i))
{
bestPre = i;
break;
}
}
base->MCFGR1 = (base->MCFGR1 & ~LPI2C_MCFGR1_PRESCALE_MASK) | LPI2C_MCFGR1_PRESCALE(bestPre);
/* Restore master mode. */
if (wasEnabled)
{
LPI2C_MasterEnable(base, true);
}
}
status_t LPI2C_MasterStart(LPI2C_Type *base, uint8_t address, lpi2c_direction_t dir)
{
/* Return an error if the bus is already in use not by us. */
status_t result = LPI2C_CheckForBusyBus(base);
if (result)
{
return result;
}
/* Clear all flags. */
LPI2C_MasterClearStatusFlags(base, kMasterClearFlags);
/* Turn off auto-stop option. */
base->MCFGR1 &= ~LPI2C_MCFGR1_AUTOSTOP_MASK;
/* Wait until there is room in the fifo. */
result = LPI2C_MasterWaitForTxReady(base);
if (result)
{
return result;
}
/* Issue start command. */
base->MTDR = kStartCmd | (((uint32_t)address << 1U) | (uint32_t)dir);
return kStatus_Success;
}
status_t LPI2C_MasterStop(LPI2C_Type *base)
{
/* Wait until there is room in the fifo. */
status_t result = LPI2C_MasterWaitForTxReady(base);
if (result)
{
return result;
}
/* Send the STOP signal */
base->MTDR = kStopCmd;
/* Wait for the stop detected flag to set, indicating the transfer has completed on the bus. */
/* Also check for errors while waiting. */
#if LPI2C_WAIT_TIMEOUT
uint32_t waitTimes = LPI2C_WAIT_TIMEOUT;
#endif
#if LPI2C_WAIT_TIMEOUT
while ((result == kStatus_Success) && (--waitTimes))
#else
while (result == kStatus_Success)
#endif
{
uint32_t status = LPI2C_MasterGetStatusFlags(base);
/* Check for error flags. */
result = LPI2C_MasterCheckAndClearError(base, status);
/* Check if the stop was sent successfully. */
if (status & kLPI2C_MasterStopDetectFlag)
{
LPI2C_MasterClearStatusFlags(base, kLPI2C_MasterStopDetectFlag);
break;
}
}
#if LPI2C_WAIT_TIMEOUT
if (waitTimes == 0)
{
return kStatus_LPI2C_Timeout;
}
#endif
return result;
}
status_t LPI2C_MasterReceive(LPI2C_Type *base, void *rxBuff, size_t rxSize)
{
status_t result;
uint8_t *buf;
assert(rxBuff);
/* Handle empty read. */
if (!rxSize)
{
return kStatus_Success;
}
/* Wait until there is room in the command fifo. */
result = LPI2C_MasterWaitForTxReady(base);
if (result)
{
return result;
}
/* Issue command to receive data. */
base->MTDR = kRxDataCmd | LPI2C_MTDR_DATA(rxSize - 1);
#if LPI2C_WAIT_TIMEOUT
uint32_t waitTimes = LPI2C_WAIT_TIMEOUT;
#endif
/* Receive data */
buf = (uint8_t *)rxBuff;
while (rxSize--)
{
/* Read LPI2C receive fifo register. The register includes a flag to indicate whether */
/* the FIFO is empty, so we can both get the data and check if we need to keep reading */
/* using a single register read. */
uint32_t value;
do
{
/* Check for errors. */
result = LPI2C_MasterCheckAndClearError(base, LPI2C_MasterGetStatusFlags(base));
if (result)
{
return result;
}
value = base->MRDR;
#if LPI2C_WAIT_TIMEOUT
} while ((value & LPI2C_MRDR_RXEMPTY_MASK) && (--waitTimes));
if (waitTimes == 0)
{
return kStatus_LPI2C_Timeout;
}
#else
} while (value & LPI2C_MRDR_RXEMPTY_MASK);
#endif
*buf++ = value & LPI2C_MRDR_DATA_MASK;
}
return kStatus_Success;
}
status_t LPI2C_MasterSend(LPI2C_Type *base, const void *txBuff, size_t txSize)
{
uint8_t *buf = (uint8_t *)((void *)txBuff);
assert(txBuff);
/* Send data buffer */
while (txSize--)
{
/* Wait until there is room in the fifo. This also checks for errors. */
status_t result = LPI2C_MasterWaitForTxReady(base);
if (result)
{
return result;
}
/* Write byte into LPI2C master data register. */
base->MTDR = *buf++;
}
return kStatus_Success;
}
status_t LPI2C_MasterTransferBlocking(LPI2C_Type *base, lpi2c_master_transfer_t *transfer)
{
status_t result = kStatus_Success;
uint16_t commandBuffer[7];
uint32_t cmdCount = 0;
assert(transfer);
assert(transfer->subaddressSize <= sizeof(transfer->subaddress));
/* Return an error if the bus is already in use not by us. */
result = LPI2C_CheckForBusyBus(base);
if (result)
{
return result;
}
/* Clear all flags. */
LPI2C_MasterClearStatusFlags(base, kMasterClearFlags);
/* Turn off auto-stop option. */
base->MCFGR1 &= ~LPI2C_MCFGR1_AUTOSTOP_MASK;
lpi2c_direction_t direction = transfer->subaddressSize ? kLPI2C_Write : transfer->direction;
if (!(transfer->flags & kLPI2C_TransferNoStartFlag))
{
commandBuffer[cmdCount++] =
(uint16_t)kStartCmd | (uint16_t)((uint16_t)((uint16_t)transfer->slaveAddress << 1U) | (uint16_t)direction);
}
/* Subaddress, MSB first. */
if (transfer->subaddressSize)
{
uint32_t subaddressRemaining = transfer->subaddressSize;
while (subaddressRemaining--)
{
uint8_t subaddressByte = (transfer->subaddress >> (8 * subaddressRemaining)) & 0xff;
commandBuffer[cmdCount++] = subaddressByte;
}
}
/* Reads need special handling. */
if ((transfer->dataSize) && (transfer->direction == kLPI2C_Read))
{
/* Need to send repeated start if switching directions to read. */
if (direction == kLPI2C_Write)
{
commandBuffer[cmdCount++] =
(uint16_t)kStartCmd |
(uint16_t)((uint16_t)((uint16_t)transfer->slaveAddress << 1U) | (uint16_t)kLPI2C_Read);
}
}
/* Send command buffer */
uint32_t index = 0;
while (cmdCount--)
{
/* Wait until there is room in the fifo. This also checks for errors. */
result = LPI2C_MasterWaitForTxReady(base);
if (result)
{
return result;
}
/* Write byte into LPI2C master data register. */
base->MTDR = commandBuffer[index];
index++;
}
/* Transmit data. */
if ((transfer->direction == kLPI2C_Write) && (transfer->dataSize > 0))
{
/* Send Data. */
result = LPI2C_MasterSend(base, transfer->data, transfer->dataSize);
}
/* Receive Data. */
if ((transfer->direction == kLPI2C_Read) && (transfer->dataSize > 0))
{
result = LPI2C_MasterReceive(base, transfer->data, transfer->dataSize);
}
if (result)
{
return result;
}
if ((transfer->flags & kLPI2C_TransferNoStopFlag) == 0)
{
result = LPI2C_MasterStop(base);
}
return result;
}
void LPI2C_MasterTransferCreateHandle(LPI2C_Type *base,
lpi2c_master_handle_t *handle,
lpi2c_master_transfer_callback_t callback,
void *userData)
{
uint32_t instance;
assert(handle);
/* Clear out the handle. */
memset(handle, 0, sizeof(*handle));
/* Look up instance number */
instance = LPI2C_GetInstance(base);
/* Save base and instance. */
handle->completionCallback = callback;
handle->userData = userData;
/* Save this handle for IRQ use. */
s_lpi2cMasterHandle[instance] = handle;
/* Set irq handler. */
s_lpi2cMasterIsr = LPI2C_MasterTransferHandleIRQ;
/* Clear internal IRQ enables and enable NVIC IRQ. */
LPI2C_MasterDisableInterrupts(base, kMasterIrqFlags);
EnableIRQ(kLpi2cIrqs[instance]);
}
/*!
* @brief Execute states until FIFOs are exhausted.
* @param handle Master nonblocking driver handle.
* @param[out] isDone Set to true if the transfer has completed.
* @retval #kStatus_Success
* @retval #kStatus_LPI2C_PinLowTimeout
* @retval #kStatus_LPI2C_ArbitrationLost
* @retval #kStatus_LPI2C_Nak
* @retval #kStatus_LPI2C_FifoError
*/
static status_t LPI2C_RunTransferStateMachine(LPI2C_Type *base, lpi2c_master_handle_t *handle, bool *isDone)
{
uint32_t status;
status_t result = kStatus_Success;
lpi2c_master_transfer_t *xfer;
size_t txCount;
size_t rxCount;
size_t txFifoSize = FSL_FEATURE_LPI2C_FIFO_SIZEn(base);
bool state_complete = false;
/* Set default isDone return value. */
*isDone = false;
/* Check for errors. */
status = LPI2C_MasterGetStatusFlags(base);
result = LPI2C_MasterCheckAndClearError(base, status);
if (result)
{
return result;
}
/* Get pointer to private data. */
xfer = &handle->transfer;
/* Get fifo counts and compute room in tx fifo. */
LPI2C_MasterGetFifoCounts(base, &rxCount, &txCount);
txCount = txFifoSize - txCount;
while (!state_complete)
{
/* Execute the state. */
switch (handle->state)
{
case kSendCommandState:
{
/* Make sure there is room in the tx fifo for the next command. */
if (!txCount--)
{
state_complete = true;
break;
}
/* Issue command. buf is a uint8_t* pointing at the uint16 command array. */
base->MTDR = *(uint16_t *)handle->buf;
handle->buf += sizeof(uint16_t);
/* Count down until all commands are sent. */
if (--handle->remainingBytes == 0)
{
/* Choose next state and set up buffer pointer and count. */
if (xfer->dataSize)
{
/* Either a send or receive transfer is next. */
handle->state = kTransferDataState;
handle->buf = (uint8_t *)xfer->data;
handle->remainingBytes = xfer->dataSize;
if (xfer->direction == kLPI2C_Read)
{
/* Disable TX interrupt */
LPI2C_MasterDisableInterrupts(base, kLPI2C_MasterTxReadyFlag);
}
}
else
{
/* No transfer, so move to stop state. */
handle->state = kStopState;
}
}
break;
}
case kIssueReadCommandState:
/* Make sure there is room in the tx fifo for the read command. */
if (!txCount--)
{
state_complete = true;
break;
}
base->MTDR = kRxDataCmd | LPI2C_MTDR_DATA(xfer->dataSize - 1);
/* Move to transfer state. */
handle->state = kTransferDataState;
if (xfer->direction == kLPI2C_Read)
{
/* Disable TX interrupt */
LPI2C_MasterDisableInterrupts(base, kLPI2C_MasterTxReadyFlag);
}
break;
case kTransferDataState:
if (xfer->direction == kLPI2C_Write)
{
/* Make sure there is room in the tx fifo. */
if (!txCount--)
{
state_complete = true;
break;
}
/* Put byte to send in fifo. */
base->MTDR = *(handle->buf)++;
}
else
{
/* XXX handle receive sizes > 256, use kIssueReadCommandState */
/* Make sure there is data in the rx fifo. */
if (!rxCount--)
{
state_complete = true;
break;
}
/* Read byte from fifo. */
*(handle->buf)++ = base->MRDR & LPI2C_MRDR_DATA_MASK;
}
/* Move to stop when the transfer is done. */
if (--handle->remainingBytes == 0)
{
handle->state = kStopState;
}
break;
case kStopState:
/* Only issue a stop transition if the caller requested it. */
if ((xfer->flags & kLPI2C_TransferNoStopFlag) == 0)
{
/* Make sure there is room in the tx fifo for the stop command. */
if (!txCount--)
{
state_complete = true;
break;
}
base->MTDR = kStopCmd;
}
else
{
/* Caller doesn't want to send a stop, so we're done now. */
*isDone = true;
state_complete = true;
break;
}
handle->state = kWaitForCompletionState;
break;
case kWaitForCompletionState:
/* We stay in this state until the stop state is detected. */
if (status & kLPI2C_MasterStopDetectFlag)
{
*isDone = true;
}
state_complete = true;
break;
default:
assert(false);
break;
}
}
return result;
}
/*!
* @brief Prepares the transfer state machine and fills in the command buffer.
* @param handle Master nonblocking driver handle.
*/
static void LPI2C_InitTransferStateMachine(lpi2c_master_handle_t *handle)
{
lpi2c_master_transfer_t *xfer = &handle->transfer;
/* Handle no start option. */
if (xfer->flags & kLPI2C_TransferNoStartFlag)
{
if (xfer->direction == kLPI2C_Read)
{
/* Need to issue read command first. */
handle->state = kIssueReadCommandState;
}
else
{
/* Start immediately in the data transfer state. */
handle->state = kTransferDataState;
}
handle->buf = (uint8_t *)xfer->data;
handle->remainingBytes = xfer->dataSize;
}
else
{
uint16_t *cmd = (uint16_t *)&handle->commandBuffer;
uint32_t cmdCount = 0;
/* Initial direction depends on whether a subaddress was provided, and of course the actual */
/* data transfer direction. */
lpi2c_direction_t direction = xfer->subaddressSize ? kLPI2C_Write : xfer->direction;
/* Start command. */
cmd[cmdCount++] =
(uint16_t)kStartCmd | (uint16_t)((uint16_t)((uint16_t)xfer->slaveAddress << 1U) | (uint16_t)direction);
/* Subaddress, MSB first. */
if (xfer->subaddressSize)
{
uint32_t subaddressRemaining = xfer->subaddressSize;
while (subaddressRemaining--)
{
uint8_t subaddressByte = (xfer->subaddress >> (8 * subaddressRemaining)) & 0xff;
cmd[cmdCount++] = subaddressByte;
}
}
/* Reads need special handling. */
if ((xfer->dataSize) && (xfer->direction == kLPI2C_Read))
{
/* Need to send repeated start if switching directions to read. */
if (direction == kLPI2C_Write)
{
cmd[cmdCount++] = (uint16_t)kStartCmd |
(uint16_t)((uint16_t)((uint16_t)xfer->slaveAddress << 1U) | (uint16_t)kLPI2C_Read);
}
/* Read command. */
cmd[cmdCount++] = kRxDataCmd | LPI2C_MTDR_DATA(xfer->dataSize - 1);
}
/* Set up state machine for transferring the commands. */
handle->state = kSendCommandState;
handle->remainingBytes = cmdCount;
handle->buf = (uint8_t *)&handle->commandBuffer;
}
}
status_t LPI2C_MasterTransferNonBlocking(LPI2C_Type *base,
lpi2c_master_handle_t *handle,
lpi2c_master_transfer_t *transfer)
{
status_t result;
assert(handle);
assert(transfer);
assert(transfer->subaddressSize <= sizeof(transfer->subaddress));
/* Return busy if another transaction is in progress. */
if (handle->state != kIdleState)
{
return kStatus_LPI2C_Busy;
}
/* Return an error if the bus is already in use not by us. */
result = LPI2C_CheckForBusyBus(base);
if (result)
{
return result;
}
/* Disable LPI2C IRQ sources while we configure stuff. */
LPI2C_MasterDisableInterrupts(base, kMasterIrqFlags);
/* Save transfer into handle. */
handle->transfer = *transfer;
/* Generate commands to send. */
LPI2C_InitTransferStateMachine(handle);
/* Clear all flags. */
LPI2C_MasterClearStatusFlags(base, kMasterClearFlags);
/* Turn off auto-stop option. */
base->MCFGR1 &= ~LPI2C_MCFGR1_AUTOSTOP_MASK;
/* Enable LPI2C internal IRQ sources. NVIC IRQ was enabled in CreateHandle() */
LPI2C_MasterEnableInterrupts(base, kMasterIrqFlags);
return result;
}
status_t LPI2C_MasterTransferGetCount(LPI2C_Type *base, lpi2c_master_handle_t *handle, size_t *count)
{
assert(handle);
if (!count)
{
return kStatus_InvalidArgument;
}
/* Catch when there is not an active transfer. */
if (handle->state == kIdleState)
{
*count = 0;
return kStatus_NoTransferInProgress;
}
uint8_t state;
uint16_t remainingBytes;
uint32_t dataSize;
/* Cache some fields with IRQs disabled. This ensures all field values */
/* are synchronized with each other during an ongoing transfer. */
uint32_t irqs = LPI2C_MasterGetEnabledInterrupts(base);
LPI2C_MasterDisableInterrupts(base, irqs);
state = handle->state;
remainingBytes = handle->remainingBytes;
dataSize = handle->transfer.dataSize;
LPI2C_MasterEnableInterrupts(base, irqs);
/* Get transfer count based on current transfer state. */
switch (state)
{
case kIdleState:
case kSendCommandState:
case kIssueReadCommandState: /* XXX return correct value for this state when >256 reads are supported */
*count = 0;
break;
case kTransferDataState:
*count = dataSize - remainingBytes;
break;
case kStopState:
case kWaitForCompletionState:
default:
*count = dataSize;
break;
}
return kStatus_Success;
}
void LPI2C_MasterTransferAbort(LPI2C_Type *base, lpi2c_master_handle_t *handle)
{
if (handle->state != kIdleState)
{
/* Disable internal IRQ enables. */
LPI2C_MasterDisableInterrupts(base, kMasterIrqFlags);
/* Reset fifos. */
base->MCR |= LPI2C_MCR_RRF_MASK | LPI2C_MCR_RTF_MASK;
/* Send a stop command to finalize the transfer. */
base->MTDR = kStopCmd;
/* Reset handle. */
handle->state = kIdleState;
}
}
void LPI2C_MasterTransferHandleIRQ(LPI2C_Type *base, lpi2c_master_handle_t *handle)
{
bool isDone;
status_t result;
/* Don't do anything if we don't have a valid handle. */
if (!handle)
{
return;
}
if (handle->state == kIdleState)
{
return;
}
result = LPI2C_RunTransferStateMachine(base, handle, &isDone);
if (isDone || (result != kStatus_Success))
{
/* XXX need to handle data that may be in rx fifo below watermark level? */
/* XXX handle error, terminate xfer */
/* Disable internal IRQ enables. */
LPI2C_MasterDisableInterrupts(base, kMasterIrqFlags);
/* Set handle to idle state. */
handle->state = kIdleState;
/* Invoke callback. */
if (handle->completionCallback)
{
handle->completionCallback(base, handle, result, handle->userData);
}
}
}
void LPI2C_SlaveGetDefaultConfig(lpi2c_slave_config_t *slaveConfig)
{
slaveConfig->enableSlave = true;
slaveConfig->address0 = 0U;
slaveConfig->address1 = 0U;
slaveConfig->addressMatchMode = kLPI2C_MatchAddress0;
slaveConfig->filterDozeEnable = true;
slaveConfig->filterEnable = true;
slaveConfig->enableGeneralCall = false;
slaveConfig->sclStall.enableAck = false;
slaveConfig->sclStall.enableTx = true;
slaveConfig->sclStall.enableRx = true;
slaveConfig->sclStall.enableAddress = false;
slaveConfig->ignoreAck = false;
slaveConfig->enableReceivedAddressRead = false;
slaveConfig->sdaGlitchFilterWidth_ns = 0; /* TODO determine default width values */
slaveConfig->sclGlitchFilterWidth_ns = 0;
slaveConfig->dataValidDelay_ns = 0;
slaveConfig->clockHoldTime_ns = 0;
}
void LPI2C_SlaveInit(LPI2C_Type *base, const lpi2c_slave_config_t *slaveConfig, uint32_t sourceClock_Hz)
{
#if !(defined(FSL_SDK_DISABLE_DRIVER_CLOCK_CONTROL) && FSL_SDK_DISABLE_DRIVER_CLOCK_CONTROL)
uint32_t instance = LPI2C_GetInstance(base);
/* Ungate the clock. */
CLOCK_EnableClock(kLpi2cClocks[instance]);
#if defined(LPI2C_PERIPH_CLOCKS)
/* Ungate the functional clock in initialize function. */
CLOCK_EnableClock(kLpi2cPeriphClocks[instance]);
#endif
#endif /* FSL_SDK_DISABLE_DRIVER_CLOCK_CONTROL */
/* Restore to reset conditions. */
LPI2C_SlaveReset(base);
/* Configure peripheral. */
base->SAMR = LPI2C_SAMR_ADDR0(slaveConfig->address0) | LPI2C_SAMR_ADDR1(slaveConfig->address1);
base->SCFGR1 =
LPI2C_SCFGR1_ADDRCFG(slaveConfig->addressMatchMode) | LPI2C_SCFGR1_IGNACK(slaveConfig->ignoreAck) |
LPI2C_SCFGR1_RXCFG(slaveConfig->enableReceivedAddressRead) | LPI2C_SCFGR1_GCEN(slaveConfig->enableGeneralCall) |
LPI2C_SCFGR1_ACKSTALL(slaveConfig->sclStall.enableAck) | LPI2C_SCFGR1_TXDSTALL(slaveConfig->sclStall.enableTx) |
LPI2C_SCFGR1_RXSTALL(slaveConfig->sclStall.enableRx) |
LPI2C_SCFGR1_ADRSTALL(slaveConfig->sclStall.enableAddress);
base->SCFGR2 =
LPI2C_SCFGR2_FILTSDA(LPI2C_GetCyclesForWidth(sourceClock_Hz, slaveConfig->sdaGlitchFilterWidth_ns,
(LPI2C_SCFGR2_FILTSDA_MASK >> LPI2C_SCFGR2_FILTSDA_SHIFT), 1)) |
LPI2C_SCFGR2_FILTSCL(LPI2C_GetCyclesForWidth(sourceClock_Hz, slaveConfig->sclGlitchFilterWidth_ns,
(LPI2C_SCFGR2_FILTSCL_MASK >> LPI2C_SCFGR2_FILTSCL_SHIFT), 1)) |
LPI2C_SCFGR2_DATAVD(LPI2C_GetCyclesForWidth(sourceClock_Hz, slaveConfig->dataValidDelay_ns,
(LPI2C_SCFGR2_DATAVD_MASK >> LPI2C_SCFGR2_DATAVD_SHIFT), 1)) |
LPI2C_SCFGR2_CLKHOLD(LPI2C_GetCyclesForWidth(sourceClock_Hz, slaveConfig->clockHoldTime_ns,
(LPI2C_SCFGR2_CLKHOLD_MASK >> LPI2C_SCFGR2_CLKHOLD_SHIFT), 1));
/* Save SCR to last so we don't enable slave until it is configured */
base->SCR = LPI2C_SCR_FILTDZ(slaveConfig->filterDozeEnable) | LPI2C_SCR_FILTEN(slaveConfig->filterEnable) |
LPI2C_SCR_SEN(slaveConfig->enableSlave);
}
void LPI2C_SlaveDeinit(LPI2C_Type *base)
{
LPI2C_SlaveReset(base);
#if !(defined(FSL_SDK_DISABLE_DRIVER_CLOCK_CONTROL) && FSL_SDK_DISABLE_DRIVER_CLOCK_CONTROL)
uint32_t instance = LPI2C_GetInstance(base);
/* Gate the clock. */
CLOCK_DisableClock(kLpi2cClocks[instance]);
#if defined(LPI2C_PERIPH_CLOCKS)
/* Gate the functional clock. */
CLOCK_DisableClock(kLpi2cPeriphClocks[instance]);
#endif
#endif /* FSL_SDK_DISABLE_DRIVER_CLOCK_CONTROL */
}
/*!
* @brief Convert provided flags to status code, and clear any errors if present.
* @param base The LPI2C peripheral base address.
* @param status Current status flags value that will be checked.
* @retval #kStatus_Success
* @retval #kStatus_LPI2C_BitError
* @retval #kStatus_LPI2C_FifoError
*/
static status_t LPI2C_SlaveCheckAndClearError(LPI2C_Type *base, uint32_t flags)
{
status_t result = kStatus_Success;
flags &= kSlaveErrorFlags;
if (flags)
{
if (flags & kLPI2C_SlaveBitErrFlag)
{
result = kStatus_LPI2C_BitError;
}
else if (flags & kLPI2C_SlaveFifoErrFlag)
{
result = kStatus_LPI2C_FifoError;
}
else
{
assert(false);
}
/* Clear the errors. */
LPI2C_SlaveClearStatusFlags(base, flags);
}
return result;
}
status_t LPI2C_SlaveSend(LPI2C_Type *base, const void *txBuff, size_t txSize, size_t *actualTxSize)
{
uint8_t *buf = (uint8_t *)((void *)txBuff);
size_t remaining = txSize;
assert(txBuff);
#if LPI2C_WAIT_TIMEOUT
uint32_t waitTimes = LPI2C_WAIT_TIMEOUT;
#endif
while (remaining)
{
uint32_t flags;
status_t result;
/* Wait until we can transmit. */
do
{
/* Check for errors */
flags = LPI2C_SlaveGetStatusFlags(base);
result = LPI2C_SlaveCheckAndClearError(base, flags);
if (result)
{
if (actualTxSize)
{
*actualTxSize = txSize - remaining;
}
return result;
}
#if LPI2C_WAIT_TIMEOUT
} while (
(!(flags & (kLPI2C_SlaveTxReadyFlag | kLPI2C_SlaveStopDetectFlag | kLPI2C_SlaveRepeatedStartDetectFlag))) &&
(--waitTimes));
if (waitTimes == 0)
{
return kStatus_LPI2C_Timeout;
}
#else
} while (
!(flags & (kLPI2C_SlaveTxReadyFlag | kLPI2C_SlaveStopDetectFlag | kLPI2C_SlaveRepeatedStartDetectFlag)));
#endif
/* Send a byte. */
if (flags & kLPI2C_SlaveTxReadyFlag)
{
base->STDR = *buf++;
--remaining;
}
/* Exit loop if we see a stop or restart */
if (flags & (kLPI2C_SlaveStopDetectFlag | kLPI2C_SlaveRepeatedStartDetectFlag))
{
LPI2C_SlaveClearStatusFlags(base, kLPI2C_SlaveStopDetectFlag | kLPI2C_SlaveRepeatedStartDetectFlag);
break;
}
}
if (actualTxSize)
{
*actualTxSize = txSize - remaining;
}
return kStatus_Success;
}
status_t LPI2C_SlaveReceive(LPI2C_Type *base, void *rxBuff, size_t rxSize, size_t *actualRxSize)
{
uint8_t *buf = (uint8_t *)rxBuff;
size_t remaining = rxSize;
assert(rxBuff);
#if LPI2C_WAIT_TIMEOUT
uint32_t waitTimes = LPI2C_WAIT_TIMEOUT;
#endif
while (remaining)
{
uint32_t flags;
status_t result;
/* Wait until we can receive. */
do
{
/* Check for errors */
flags = LPI2C_SlaveGetStatusFlags(base);
result = LPI2C_SlaveCheckAndClearError(base, flags);
if (result)
{
if (actualRxSize)
{
*actualRxSize = rxSize - remaining;
}
return result;
}
#if LPI2C_WAIT_TIMEOUT
} while (
(!(flags & (kLPI2C_SlaveRxReadyFlag | kLPI2C_SlaveStopDetectFlag | kLPI2C_SlaveRepeatedStartDetectFlag))) &&
(--waitTimes));
if (waitTimes == 0)
{
return kStatus_LPI2C_Timeout;
}
#else
} while (
!(flags & (kLPI2C_SlaveRxReadyFlag | kLPI2C_SlaveStopDetectFlag | kLPI2C_SlaveRepeatedStartDetectFlag)));
#endif
/* Receive a byte. */
if (flags & kLPI2C_SlaveRxReadyFlag)
{
*buf++ = base->SRDR & LPI2C_SRDR_DATA_MASK;
--remaining;
}
/* Exit loop if we see a stop or restart */
if (flags & (kLPI2C_SlaveStopDetectFlag | kLPI2C_SlaveRepeatedStartDetectFlag))
{
LPI2C_SlaveClearStatusFlags(base, kLPI2C_SlaveStopDetectFlag | kLPI2C_SlaveRepeatedStartDetectFlag);
break;
}
}
if (actualRxSize)
{
*actualRxSize = rxSize - remaining;
}
return kStatus_Success;
}
void LPI2C_SlaveTransferCreateHandle(LPI2C_Type *base,
lpi2c_slave_handle_t *handle,
lpi2c_slave_transfer_callback_t callback,
void *userData)
{
uint32_t instance;
assert(handle);
/* Clear out the handle. */
memset(handle, 0, sizeof(*handle));
/* Look up instance number */
instance = LPI2C_GetInstance(base);
/* Save base and instance. */
handle->callback = callback;
handle->userData = userData;
/* Save this handle for IRQ use. */
s_lpi2cSlaveHandle[instance] = handle;
/* Set irq handler. */
s_lpi2cSlaveIsr = LPI2C_SlaveTransferHandleIRQ;
/* Clear internal IRQ enables and enable NVIC IRQ. */
LPI2C_SlaveDisableInterrupts(base, kSlaveIrqFlags);
EnableIRQ(kLpi2cIrqs[instance]);
/* Nack by default. */
base->STAR = LPI2C_STAR_TXNACK_MASK;
}
status_t LPI2C_SlaveTransferNonBlocking(LPI2C_Type *base, lpi2c_slave_handle_t *handle, uint32_t eventMask)
{
uint32_t status;
assert(handle);
/* Return busy if another transaction is in progress. */
if (handle->isBusy)
{
return kStatus_LPI2C_Busy;
}
/* Return an error if the bus is already in use not by us. */
status = LPI2C_SlaveGetStatusFlags(base);
if ((status & kLPI2C_SlaveBusBusyFlag) && (!(status & kLPI2C_SlaveBusyFlag)))
{
return kStatus_LPI2C_Busy;
}
/* Disable LPI2C IRQ sources while we configure stuff. */
LPI2C_SlaveDisableInterrupts(base, kSlaveIrqFlags);
/* Clear transfer in handle. */
memset(&handle->transfer, 0, sizeof(handle->transfer));
/* Record that we're busy. */
handle->isBusy = true;
/* Set up event mask. tx and rx are always enabled. */
handle->eventMask = eventMask | kLPI2C_SlaveTransmitEvent | kLPI2C_SlaveReceiveEvent;
/* Ack by default. */
base->STAR = 0;
/* Clear all flags. */
LPI2C_SlaveClearStatusFlags(base, kSlaveClearFlags);
/* Enable LPI2C internal IRQ sources. NVIC IRQ was enabled in CreateHandle() */
LPI2C_SlaveEnableInterrupts(base, kSlaveIrqFlags);
return kStatus_Success;
}
status_t LPI2C_SlaveTransferGetCount(LPI2C_Type *base, lpi2c_slave_handle_t *handle, size_t *count)
{
assert(handle);
if (!count)
{
return kStatus_InvalidArgument;
}
/* Catch when there is not an active transfer. */
if (!handle->isBusy)
{
*count = 0;
return kStatus_NoTransferInProgress;
}
/* For an active transfer, just return the count from the handle. */
*count = handle->transferredCount;
return kStatus_Success;
}
void LPI2C_SlaveTransferAbort(LPI2C_Type *base, lpi2c_slave_handle_t *handle)
{
assert(handle);
/* Return idle if no transaction is in progress. */
if (handle->isBusy)
{
/* Disable LPI2C IRQ sources. */
LPI2C_SlaveDisableInterrupts(base, kSlaveIrqFlags);
/* Nack by default. */
base->STAR = LPI2C_STAR_TXNACK_MASK;
/* Reset transfer info. */
memset(&handle->transfer, 0, sizeof(handle->transfer));
/* We're no longer busy. */
handle->isBusy = false;
}
}
void LPI2C_SlaveTransferHandleIRQ(LPI2C_Type *base, lpi2c_slave_handle_t *handle)
{
uint32_t flags;
lpi2c_slave_transfer_t *xfer;
/* Check for a valid handle in case of a spurious interrupt. */
if (!handle)
{
return;
}
xfer = &handle->transfer;
/* Get status flags. */
flags = LPI2C_SlaveGetStatusFlags(base);
if (flags & (kLPI2C_SlaveBitErrFlag | kLPI2C_SlaveFifoErrFlag))
{
xfer->event = kLPI2C_SlaveCompletionEvent;
xfer->completionStatus = LPI2C_SlaveCheckAndClearError(base, flags);
if ((handle->eventMask & kLPI2C_SlaveCompletionEvent) && (handle->callback))
{
handle->callback(base, xfer, handle->userData);
}
return;
}
if (flags & (kLPI2C_SlaveRepeatedStartDetectFlag | kLPI2C_SlaveStopDetectFlag))
{
xfer->event = (flags & kLPI2C_SlaveRepeatedStartDetectFlag) ? kLPI2C_SlaveRepeatedStartEvent :
kLPI2C_SlaveCompletionEvent;
xfer->receivedAddress = 0;
xfer->completionStatus = kStatus_Success;
xfer->transferredCount = handle->transferredCount;
if (xfer->event == kLPI2C_SlaveCompletionEvent)
{
handle->isBusy = false;
}
if (handle->wasTransmit)
{
/* Subtract one from the transmit count to offset the fact that LPI2C asserts the */
/* tx flag before it sees the nack from the master-receiver, thus causing one more */
/* count that the master actually receives. */
--xfer->transferredCount;
handle->wasTransmit = false;
}
/* Clear the flag. */
LPI2C_SlaveClearStatusFlags(base, flags & (kLPI2C_SlaveRepeatedStartDetectFlag | kLPI2C_SlaveStopDetectFlag));
/* Revert to sending an Ack by default, in case we sent a Nack for receive. */
base->STAR = 0;
if ((handle->eventMask & xfer->event) && (handle->callback))
{
handle->callback(base, xfer, handle->userData);
}
/* Clean up transfer info on completion, after the callback has been invoked. */
memset(&handle->transfer, 0, sizeof(handle->transfer));
}
if (flags & kLPI2C_SlaveAddressValidFlag)
{
xfer->event = kLPI2C_SlaveAddressMatchEvent;
xfer->receivedAddress = base->SASR & LPI2C_SASR_RADDR_MASK;
if ((handle->eventMask & kLPI2C_SlaveAddressMatchEvent) && (handle->callback))
{
handle->callback(base, xfer, handle->userData);
}
}
if (flags & kLPI2C_SlaveTransmitAckFlag)
{
xfer->event = kLPI2C_SlaveTransmitAckEvent;
if ((handle->eventMask & kLPI2C_SlaveTransmitAckEvent) && (handle->callback))
{
handle->callback(base, xfer, handle->userData);
}
}
/* Handle transmit and receive. */
if (flags & kLPI2C_SlaveTxReadyFlag)
{
handle->wasTransmit = true;
/* If we're out of data, invoke callback to get more. */
if ((!xfer->data) || (!xfer->dataSize))
{
xfer->event = kLPI2C_SlaveTransmitEvent;
if (handle->callback)
{
handle->callback(base, xfer, handle->userData);
}
/* Clear the transferred count now that we have a new buffer. */
handle->transferredCount = 0;
}
/* Transmit a byte. */
if ((xfer->data) && (xfer->dataSize))
{
base->STDR = *xfer->data++;
--xfer->dataSize;
++handle->transferredCount;
}
}
if (flags & kLPI2C_SlaveRxReadyFlag)
{
/* If we're out of room in the buffer, invoke callback to get another. */
if ((!xfer->data) || (!xfer->dataSize))
{
xfer->event = kLPI2C_SlaveReceiveEvent;
if (handle->callback)
{
handle->callback(base, xfer, handle->userData);
}
/* Clear the transferred count now that we have a new buffer. */
handle->transferredCount = 0;
}
/* Receive a byte. */
if ((xfer->data) && (xfer->dataSize))
{
*xfer->data++ = base->SRDR;
--xfer->dataSize;
++handle->transferredCount;
}
else
{
/* We don't have any room to receive more data, so send a nack. */
base->STAR = LPI2C_STAR_TXNACK_MASK;
}
}
}
/*!
* @brief Shared IRQ handler that can call both master and slave ISRs.
*
* The master and slave ISRs are called through function pointers in order to decouple
* this code from the ISR functions. Without this, the linker would always pull in both
* ISRs and every function they call, even if only the functional API was used.
*
* @param base The LPI2C peripheral base address.
* @param instance The LPI2C peripheral instance number.
*/
static void LPI2C_CommonIRQHandler(LPI2C_Type *base, uint32_t instance)
{
/* Check for master IRQ. */
if ((base->MCR & LPI2C_MCR_MEN_MASK) && s_lpi2cMasterIsr)
{
/* Master mode. */
s_lpi2cMasterIsr(base, s_lpi2cMasterHandle[instance]);
}
/* Check for slave IRQ. */
if ((base->SCR & LPI2C_SCR_SEN_MASK) && s_lpi2cSlaveIsr)
{
/* Slave mode. */
s_lpi2cSlaveIsr(base, s_lpi2cSlaveHandle[instance]);
}
/* Add for ARM errata 838869, affects Cortex-M4, Cortex-M4F Store immediate overlapping
exception return operation might vector to incorrect interrupt */
#if defined __CORTEX_M && (__CORTEX_M == 4U)
__DSB();
#endif
}
#if defined(LPI2C0)
/* Implementation of LPI2C0 handler named in startup code. */
void LPI2C0_DriverIRQHandler(void)
{
LPI2C_CommonIRQHandler(LPI2C0, 0);
}
#endif
#if defined(LPI2C1)
/* Implementation of LPI2C1 handler named in startup code. */
void LPI2C1_DriverIRQHandler(void)
{
LPI2C_CommonIRQHandler(LPI2C1, 1);
}
#endif
#if defined(LPI2C2)
/* Implementation of LPI2C2 handler named in startup code. */
void LPI2C2_DriverIRQHandler(void)
{
LPI2C_CommonIRQHandler(LPI2C2, 2);
}
#endif
#if defined(LPI2C3)
/* Implementation of LPI2C3 handler named in startup code. */
void LPI2C3_DriverIRQHandler(void)
{
LPI2C_CommonIRQHandler(LPI2C3, 3);
}
#endif
#if defined(CM4_0__LPI2C)
/* Implementation of CM4_0__LPI2C handler named in startup code. */
void M4_0_LPI2C_DriverIRQHandler(void)
{
LPI2C_CommonIRQHandler(CM4_0__LPI2C, LPI2C_GetInstance(CM4_0__LPI2C));
}
#endif
#if defined(CM4_1__LPI2C)
/* Implementation of CM4_1__LPI2C handler named in startup code. */
void M4_1_LPI2C_DriverIRQHandler(void)
{
LPI2C_CommonIRQHandler(CM4_1__LPI2C, LPI2C_GetInstance(CM4_1__LPI2C));
}
#endif
#if defined(DMA__LPI2C0)
/* Implementation of DMA__LPI2C0 handler named in startup code. */
void DMA_I2C0_INT_DriverIRQHandler(void)
{
LPI2C_CommonIRQHandler(DMA__LPI2C0, LPI2C_GetInstance(DMA__LPI2C0));
}
#endif
#if defined(DMA__LPI2C1)
/* Implementation of DMA__LPI2C1 handler named in startup code. */
void DMA_I2C1_INT_DriverIRQHandler(void)
{
LPI2C_CommonIRQHandler(DMA__LPI2C1, LPI2C_GetInstance(DMA__LPI2C1));
}
#endif
#if defined(DMA__LPI2C2)
/* Implementation of DMA__LPI2C2 handler named in startup code. */
void DMA_I2C2_INT_DriverIRQHandler(void)
{
LPI2C_CommonIRQHandler(DMA__LPI2C2, LPI2C_GetInstance(DMA__LPI2C2));
}
#endif
#if defined(DMA__LPI2C3)
/* Implementation of DMA__LPI2C3 handler named in startup code. */
void DMA_I2C3_INT_DriverIRQHandler(void)
{
LPI2C_CommonIRQHandler(DMA__LPI2C3, LPI2C_GetInstance(DMA__LPI2C3));
}
#endif
#if defined(DMA__LPI2C4)
/* Implementation of DMA__LPI2C3 handler named in startup code. */
void DMA_I2C4_INT_DriverIRQHandler(void)
{
LPI2C_CommonIRQHandler(DMA__LPI2C4, LPI2C_GetInstance(DMA__LPI2C4));
}
#endif