rtt-f030/bsp/lm3s8962/Libraries/driverlib/adc.c

1471 lines
53 KiB
C
Raw Normal View History

//*****************************************************************************
//
// adc.c - Driver for the ADC.
//
// Copyright (c) 2005-2010 Texas Instruments Incorporated. All rights reserved.
// Software License Agreement
//
// Texas Instruments (TI) is supplying this software for use solely and
// exclusively on TI's microcontroller products. The software is owned by
// TI and/or its suppliers, and is protected under applicable copyright
// laws. You may not combine this software with "viral" open-source
// software in order to form a larger program.
//
// THIS SOFTWARE IS PROVIDED "AS IS" AND WITH ALL FAULTS.
// NO WARRANTIES, WHETHER EXPRESS, IMPLIED OR STATUTORY, INCLUDING, BUT
// NOT LIMITED TO, IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
// A PARTICULAR PURPOSE APPLY TO THIS SOFTWARE. TI SHALL NOT, UNDER ANY
// CIRCUMSTANCES, BE LIABLE FOR SPECIAL, INCIDENTAL, OR CONSEQUENTIAL
// DAMAGES, FOR ANY REASON WHATSOEVER.
//
// This is part of revision 6459 of the Stellaris Peripheral Driver Library.
//
//*****************************************************************************
//*****************************************************************************
//
//! \addtogroup adc_api
//! @{
//
//*****************************************************************************
#include "inc/hw_adc.h"
#include "inc/hw_ints.h"
#include "inc/hw_memmap.h"
#include "inc/hw_types.h"
#include "driverlib/adc.h"
#include "driverlib/debug.h"
#include "driverlib/interrupt.h"
//*****************************************************************************
//
// These defines are used by the ADC driver to simplify access to the ADC
// sequencer's registers.
//
//*****************************************************************************
#define ADC_SEQ (ADC_O_SSMUX0)
#define ADC_SEQ_STEP (ADC_O_SSMUX1 - ADC_O_SSMUX0)
#define ADC_SSMUX (ADC_O_SSMUX0 - ADC_O_SSMUX0)
#define ADC_SSCTL (ADC_O_SSCTL0 - ADC_O_SSMUX0)
#define ADC_SSFIFO (ADC_O_SSFIFO0 - ADC_O_SSMUX0)
#define ADC_SSFSTAT (ADC_O_SSFSTAT0 - ADC_O_SSMUX0)
#define ADC_SSOP (ADC_O_SSOP0 - ADC_O_SSMUX0)
#define ADC_SSDC (ADC_O_SSDC0 - ADC_O_SSMUX0)
//*****************************************************************************
//
// The currently configured software oversampling factor for each of the ADC
// sequencers.
//
//*****************************************************************************
static unsigned char g_pucOversampleFactor[3];
//*****************************************************************************
//
//! Registers an interrupt handler for an ADC interrupt.
//!
//! \param ulBase is the base address of the ADC module.
//! \param ulSequenceNum is the sample sequence number.
//! \param pfnHandler is a pointer to the function to be called when the
//! ADC sample sequence interrupt occurs.
//!
//! This function sets the handler to be called when a sample sequence
//! interrupt occurs. This will enable the global interrupt in the interrupt
//! controller; the sequence interrupt must be enabled with ADCIntEnable(). It
//! is the interrupt handler's responsibility to clear the interrupt source via
//! ADCIntClear().
//!
//! \sa IntRegister() for important information about registering interrupt
//! handlers.
//!
//! \return None.
//
//*****************************************************************************
void
ADCIntRegister(unsigned long ulBase, unsigned long ulSequenceNum,
void (*pfnHandler)(void))
{
unsigned long ulInt;
//
// Check the arguments.
//
ASSERT((ulBase == ADC0_BASE) || (ulBase == ADC1_BASE));
ASSERT(ulSequenceNum < 4);
//
// Determine the interrupt to register based on the sequence number.
//
ulInt = ((ulBase == ADC0_BASE) ? (INT_ADC0SS0 + ulSequenceNum) :
(INT_ADC1SS0 + ulSequenceNum));
//
// Register the interrupt handler.
//
IntRegister(ulInt, pfnHandler);
//
// Enable the timer interrupt.
//
IntEnable(ulInt);
}
//*****************************************************************************
//
//! Unregisters the interrupt handler for an ADC interrupt.
//!
//! \param ulBase is the base address of the ADC module.
//! \param ulSequenceNum is the sample sequence number.
//!
//! This function unregisters the interrupt handler. This will disable the
//! global interrupt in the interrupt controller; the sequence interrupt must
//! be disabled via ADCIntDisable().
//!
//! \sa IntRegister() for important information about registering interrupt
//! handlers.
//!
//! \return None.
//
//*****************************************************************************
void
ADCIntUnregister(unsigned long ulBase, unsigned long ulSequenceNum)
{
unsigned long ulInt;
//
// Check the arguments.
//
ASSERT((ulBase == ADC0_BASE) || (ulBase == ADC1_BASE));
ASSERT(ulSequenceNum < 4);
//
// Determine the interrupt to unregister based on the sequence number.
//
ulInt = ((ulBase == ADC0_BASE) ? (INT_ADC0SS0 + ulSequenceNum) :
(INT_ADC1SS0 + ulSequenceNum));
//
// Disable the interrupt.
//
IntDisable(ulInt);
//
// Unregister the interrupt handler.
//
IntUnregister(ulInt);
}
//*****************************************************************************
//
//! Disables a sample sequence interrupt.
//!
//! \param ulBase is the base address of the ADC module.
//! \param ulSequenceNum is the sample sequence number.
//!
//! This function disables the requested sample sequence interrupt.
//!
//! \return None.
//
//*****************************************************************************
void
ADCIntDisable(unsigned long ulBase, unsigned long ulSequenceNum)
{
//
// Check the arguments.
//
ASSERT((ulBase == ADC0_BASE) || (ulBase == ADC1_BASE));
ASSERT(ulSequenceNum < 4);
//
// Disable this sample sequence interrupt.
//
HWREG(ulBase + ADC_O_IM) &= ~(1 << ulSequenceNum);
}
//*****************************************************************************
//
//! Enables a sample sequence interrupt.
//!
//! \param ulBase is the base address of the ADC module.
//! \param ulSequenceNum is the sample sequence number.
//!
//! This function enables the requested sample sequence interrupt. Any
//! outstanding interrupts are cleared before enabling the sample sequence
//! interrupt.
//!
//! \return None.
//
//*****************************************************************************
void
ADCIntEnable(unsigned long ulBase, unsigned long ulSequenceNum)
{
//
// Check the arguments.
//
ASSERT((ulBase == ADC0_BASE) || (ulBase == ADC1_BASE));
ASSERT(ulSequenceNum < 4);
//
// Clear any outstanding interrupts on this sample sequence.
//
HWREG(ulBase + ADC_O_ISC) = 1 << ulSequenceNum;
//
// Enable this sample sequence interrupt.
//
HWREG(ulBase + ADC_O_IM) |= 1 << ulSequenceNum;
}
//*****************************************************************************
//
//! Gets the current interrupt status.
//!
//! \param ulBase is the base address of the ADC module.
//! \param ulSequenceNum is the sample sequence number.
//! \param bMasked is false if the raw interrupt status is required and true if
//! the masked interrupt status is required.
//!
//! This returns the interrupt status for the specified sample sequence.
//! Either the raw interrupt status or the status of interrupts that are
//! allowed to reflect to the processor can be returned.
//!
//! \return The current raw or masked interrupt status.
//
//*****************************************************************************
unsigned long
ADCIntStatus(unsigned long ulBase, unsigned long ulSequenceNum,
tBoolean bMasked)
{
unsigned long ulTemp;
//
// Check the arguments.
//
ASSERT((ulBase == ADC0_BASE) || (ulBase == ADC1_BASE));
ASSERT(ulSequenceNum < 4);
//
// Return either the interrupt status or the raw interrupt status as
// requested.
//
if(bMasked)
{
ulTemp = HWREG(ulBase + ADC_O_ISC) & (0x10001 << ulSequenceNum);
}
else
{
ulTemp = HWREG(ulBase + ADC_O_RIS) & (0x10000 | (1 << ulSequenceNum));
//
// If the digital comparator status bit is set, reflect it to the
// appropriate sequence bit.
//
if(ulTemp & 0x10000)
{
ulTemp |= 0xF0000;
ulTemp &= ~(0x10000 << ulSequenceNum);
}
}
//
// Return the interrupt status
//
return(ulTemp);
}
//*****************************************************************************
//
//! Clears sample sequence interrupt source.
//!
//! \param ulBase is the base address of the ADC module.
//! \param ulSequenceNum is the sample sequence number.
//!
//! The specified sample sequence interrupt is cleared, so that it no longer
//! asserts. This must be done in the interrupt handler to keep it from being
//! called again immediately upon exit.
//!
//! \note Since there is a write buffer in the Cortex-M3 processor, it may take
//! several clock cycles before the interrupt source is actually cleared.
//! Therefore, it is recommended that the interrupt source be cleared early in
//! the interrupt handler (as opposed to the very last action) to avoid
//! returning from the interrupt handler before the interrupt source is
//! actually cleared. Failure to do so may result in the interrupt handler
//! being immediately reentered (since NVIC still sees the interrupt source
//! asserted).
//!
//! \return None.
//
//*****************************************************************************
void
ADCIntClear(unsigned long ulBase, unsigned long ulSequenceNum)
{
//
// Check the arugments.
//
ASSERT((ulBase == ADC0_BASE) || (ulBase == ADC1_BASE));
ASSERT(ulSequenceNum < 4);
//
// Clear the interrupt.
//
HWREG(ulBase + ADC_O_ISC) = 1 << ulSequenceNum;
}
//*****************************************************************************
//
//! Enables a sample sequence.
//!
//! \param ulBase is the base address of the ADC module.
//! \param ulSequenceNum is the sample sequence number.
//!
//! Allows the specified sample sequence to be captured when its trigger is
//! detected. A sample sequence must be configured before it is enabled.
//!
//! \return None.
//
//*****************************************************************************
void
ADCSequenceEnable(unsigned long ulBase, unsigned long ulSequenceNum)
{
//
// Check the arugments.
//
ASSERT((ulBase == ADC0_BASE) || (ulBase == ADC1_BASE));
ASSERT(ulSequenceNum < 4);
//
// Enable the specified sequence.
//
HWREG(ulBase + ADC_O_ACTSS) |= 1 << ulSequenceNum;
}
//*****************************************************************************
//
//! Disables a sample sequence.
//!
//! \param ulBase is the base address of the ADC module.
//! \param ulSequenceNum is the sample sequence number.
//!
//! Prevents the specified sample sequence from being captured when its trigger
//! is detected. A sample sequence should be disabled before it is configured.
//!
//! \return None.
//
//*****************************************************************************
void
ADCSequenceDisable(unsigned long ulBase, unsigned long ulSequenceNum)
{
//
// Check the arugments.
//
ASSERT((ulBase == ADC0_BASE) || (ulBase == ADC1_BASE));
ASSERT(ulSequenceNum < 4);
//
// Disable the specified sequences.
//
HWREG(ulBase + ADC_O_ACTSS) &= ~(1 << ulSequenceNum);
}
//*****************************************************************************
//
//! Configures the trigger source and priority of a sample sequence.
//!
//! \param ulBase is the base address of the ADC module.
//! \param ulSequenceNum is the sample sequence number.
//! \param ulTrigger is the trigger source that initiates the sample sequence;
//! must be one of the \b ADC_TRIGGER_* values.
//! \param ulPriority is the relative priority of the sample sequence with
//! respect to the other sample sequences.
//!
//! This function configures the initiation criteria for a sample sequence.
//! Valid sample sequences range from zero to three; sequence zero will capture
//! up to eight samples, sequences one and two will capture up to four samples,
//! and sequence three will capture a single sample. The trigger condition and
//! priority (with respect to other sample sequence execution) is set.
//!
//! The \e ulTrigger parameter can take on the following values:
//!
//! - \b ADC_TRIGGER_PROCESSOR - A trigger generated by the processor, via the
//! ADCProcessorTrigger() function.
//! - \b ADC_TRIGGER_COMP0 - A trigger generated by the first analog
//! comparator; configured with ComparatorConfigure().
//! - \b ADC_TRIGGER_COMP1 - A trigger generated by the second analog
//! comparator; configured with ComparatorConfigure().
//! - \b ADC_TRIGGER_COMP2 - A trigger generated by the third analog
//! comparator; configured with ComparatorConfigure().
//! - \b ADC_TRIGGER_EXTERNAL - A trigger generated by an input from the Port
//! B4 pin.
//! - \b ADC_TRIGGER_TIMER - A trigger generated by a timer; configured with
//! TimerControlTrigger().
//! - \b ADC_TRIGGER_PWM0 - A trigger generated by the first PWM generator;
//! configured with PWMGenIntTrigEnable().
//! - \b ADC_TRIGGER_PWM1 - A trigger generated by the second PWM generator;
//! configured with PWMGenIntTrigEnable().
//! - \b ADC_TRIGGER_PWM2 - A trigger generated by the third PWM generator;
//! configured with PWMGenIntTrigEnable().
//! - \b ADC_TRIGGER_PWM3 - A trigger generated by the fourth PWM generator;
//! configured with PWMGenIntTrigEnable().
//! - \b ADC_TRIGGER_ALWAYS - A trigger that is always asserted, causing the
//! sample sequence to capture repeatedly (so long as
//! there is not a higher priority source active).
//!
//! Note that not all trigger sources are available on all Stellaris family
//! members; consult the data sheet for the device in question to determine the
//! availability of triggers.
//!
//! The \e ulPriority parameter is a value between 0 and 3, where 0 represents
//! the highest priority and 3 the lowest. Note that when programming the
//! priority among a set of sample sequences, each must have unique priority;
//! it is up to the caller to guarantee the uniqueness of the priorities.
//!
//! \return None.
//
//*****************************************************************************
void
ADCSequenceConfigure(unsigned long ulBase, unsigned long ulSequenceNum,
unsigned long ulTrigger, unsigned long ulPriority)
{
//
// Check the arugments.
//
ASSERT((ulBase == ADC0_BASE) || (ulBase == ADC1_BASE));
ASSERT(ulSequenceNum < 4);
ASSERT((ulTrigger == ADC_TRIGGER_PROCESSOR) ||
(ulTrigger == ADC_TRIGGER_COMP0) ||
(ulTrigger == ADC_TRIGGER_COMP1) ||
(ulTrigger == ADC_TRIGGER_COMP2) ||
(ulTrigger == ADC_TRIGGER_EXTERNAL) ||
(ulTrigger == ADC_TRIGGER_TIMER) ||
(ulTrigger == ADC_TRIGGER_PWM0) ||
(ulTrigger == ADC_TRIGGER_PWM1) ||
(ulTrigger == ADC_TRIGGER_PWM2) ||
(ulTrigger == ADC_TRIGGER_PWM3) ||
(ulTrigger == ADC_TRIGGER_ALWAYS));
ASSERT(ulPriority < 4);
//
// Compute the shift for the bits that control this sample sequence.
//
ulSequenceNum *= 4;
//
// Set the trigger event for this sample sequence.
//
HWREG(ulBase + ADC_O_EMUX) = ((HWREG(ulBase + ADC_O_EMUX) &
~(0xf << ulSequenceNum)) |
((ulTrigger & 0xf) << ulSequenceNum));
//
// Set the priority for this sample sequence.
//
HWREG(ulBase + ADC_O_SSPRI) = ((HWREG(ulBase + ADC_O_SSPRI) &
~(0xf << ulSequenceNum)) |
((ulPriority & 0x3) << ulSequenceNum));
}
//*****************************************************************************
//
//! Configure a step of the sample sequencer.
//!
//! \param ulBase is the base address of the ADC module.
//! \param ulSequenceNum is the sample sequence number.
//! \param ulStep is the step to be configured.
//! \param ulConfig is the configuration of this step; must be a logical OR of
//! \b ADC_CTL_TS, \b ADC_CTL_IE, \b ADC_CTL_END, \b ADC_CTL_D, and one of the
//! input channel selects (\b ADC_CTL_CH0 through \b ADC_CTL_CH15). For parts
//! with the digital comparator feature, the follow values may also be OR'd
//! into the \e ulConfig value to enable the digital comparater feature:
//! \b ADC_CTL_CE and one of the comparater selects (\b ADC_CTL_CMP0 through
//! \b ADC_CTL_CMP7).
//!
//! This function will set the configuration of the ADC for one step of a
//! sample sequence. The ADC can be configured for single-ended or
//! differential operation (the \b ADC_CTL_D bit selects differential
//! operation when set), the channel to be sampled can be chosen (the
//! \b ADC_CTL_CH0 through \b ADC_CTL_CH15 values), and the internal
//! temperature sensor can be selected (the \b ADC_CTL_TS bit). Additionally,
//! this step can be defined as the last in the sequence (the \b ADC_CTL_END
//! bit) and it can be configured to cause an interrupt when the step is
//! complete (the \b ADC_CTL_IE bit). If the digital comparators are present
//! on the device, this step may also be configured send the ADC sample to
//! the selected comparator (the \b ADC_CTL_CMP0 through \b ADC_CTL_CMP7
//! values) by using the \b ADC_CTL_CE bit. The configuration is used by the
//! ADC at the appropriate time when the trigger for this sequence occurs.
//!
//! \note If the Digitial Comparator is present and enabled using the
//! \b ADC_CTL_CE bit, the ADC sample will NOT be written into the ADC
//! sequence data FIFO.
//!
//! The \e ulStep parameter determines the order in which the samples are
//! captured by the ADC when the trigger occurs. It can range from zero to
//! seven for the first sample sequence, from zero to three for the second and
//! third sample sequence, and can only be zero for the fourth sample sequence.
//!
//! Differential mode only works with adjacent channel pairs (for example, 0
//! and 1). The channel select must be the number of the channel pair to
//! sample (for example, \b ADC_CTL_CH0 for 0 and 1, or \b ADC_CTL_CH1 for 2
//! and 3) or undefined results will be returned by the ADC. Additionally, if
//! differential mode is selected when the temperature sensor is being sampled,
//! undefined results will be returned by the ADC.
//!
//! It is the responsibility of the caller to ensure that a valid configuration
//! is specified; this function does not check the validity of the specified
//! configuration.
//!
//! \return None.
//
//*****************************************************************************
void
ADCSequenceStepConfigure(unsigned long ulBase, unsigned long ulSequenceNum,
unsigned long ulStep, unsigned long ulConfig)
{
unsigned long ulTemp;
//
// Check the arugments.
//
ASSERT((ulBase == ADC0_BASE) || (ulBase == ADC1_BASE));
ASSERT(ulSequenceNum < 4);
ASSERT(((ulSequenceNum == 0) && (ulStep < 8)) ||
((ulSequenceNum == 1) && (ulStep < 4)) ||
((ulSequenceNum == 2) && (ulStep < 4)) ||
((ulSequenceNum == 3) && (ulStep < 1)));
//
// Get the offset of the sequence to be configured.
//
ulBase += ADC_SEQ + (ADC_SEQ_STEP * ulSequenceNum);
//
// Compute the shift for the bits that control this step.
//
ulStep *= 4;
//
// Set the analog mux value for this step.
//
HWREG(ulBase + ADC_SSMUX) = ((HWREG(ulBase + ADC_SSMUX) &
~(0x0000000f << ulStep)) |
((ulConfig & 0x0f) << ulStep));
//
// Set the control value for this step.
//
HWREG(ulBase + ADC_SSCTL) = ((HWREG(ulBase + ADC_SSCTL) &
~(0x0000000f << ulStep)) |
(((ulConfig & 0xf0) >> 4) << ulStep));
//
// Enable digital comparator if specified in the ulConfig bit-fields.
//
if(ulConfig & 0x000F0000)
{
//
// Program the comparator for the specified step.
//
ulTemp = HWREG(ulBase + ADC_SSDC);
ulTemp &= ~(0xF << ulStep);
ulTemp |= (((ulConfig & 0x00070000) >> 16) << ulStep);
HWREG(ulBase + ADC_SSDC) = ulTemp;
//
// Enable the comparator.
//
ulTemp = HWREG(ulBase + ADC_SSOP);
ulTemp |= (1 << ulStep);
HWREG(ulBase + ADC_SSOP) = ulTemp;
}
//
// Disable digital comparator if not specified.
//
else
{
ulTemp = HWREG(ulBase + ADC_SSOP);
ulTemp &= ~(1 << ulStep);
HWREG(ulBase + ADC_SSOP) = ulTemp;
}
}
//*****************************************************************************
//
//! Determines if a sample sequence overflow occurred.
//!
//! \param ulBase is the base address of the ADC module.
//! \param ulSequenceNum is the sample sequence number.
//!
//! This determines if a sample sequence overflow has occurred. This will
//! happen if the captured samples are not read from the FIFO before the next
//! trigger occurs.
//!
//! \return Returns zero if there was not an overflow, and non-zero if there
//! was.
//
//*****************************************************************************
long
ADCSequenceOverflow(unsigned long ulBase, unsigned long ulSequenceNum)
{
//
// Check the arguments.
//
ASSERT((ulBase == ADC0_BASE) || (ulBase == ADC1_BASE));
ASSERT(ulSequenceNum < 4);
//
// Determine if there was an overflow on this sequence.
//
return(HWREG(ulBase + ADC_O_OSTAT) & (1 << ulSequenceNum));
}
//*****************************************************************************
//
//! Clears the overflow condition on a sample sequence.
//!
//! \param ulBase is the base address of the ADC module.
//! \param ulSequenceNum is the sample sequence number.
//!
//! This will clear an overflow condition on one of the sample sequences. The
//! overflow condition must be cleared in order to detect a subsequent overflow
//! condition (it otherwise causes no harm).
//!
//! \return None.
//
//*****************************************************************************
void
ADCSequenceOverflowClear(unsigned long ulBase, unsigned long ulSequenceNum)
{
//
// Check the arguments.
//
ASSERT((ulBase == ADC0_BASE) || (ulBase == ADC1_BASE));
ASSERT(ulSequenceNum < 4);
//
// Clear the overflow condition for this sequence.
//
HWREG(ulBase + ADC_O_OSTAT) = 1 << ulSequenceNum;
}
//*****************************************************************************
//
//! Determines if a sample sequence underflow occurred.
//!
//! \param ulBase is the base address of the ADC module.
//! \param ulSequenceNum is the sample sequence number.
//!
//! This determines if a sample sequence underflow has occurred. This will
//! happen if too many samples are read from the FIFO.
//!
//! \return Returns zero if there was not an underflow, and non-zero if there
//! was.
//
//*****************************************************************************
long
ADCSequenceUnderflow(unsigned long ulBase, unsigned long ulSequenceNum)
{
//
// Check the arguments.
//
ASSERT((ulBase == ADC0_BASE) || (ulBase == ADC1_BASE));
ASSERT(ulSequenceNum < 4);
//
// Determine if there was an underflow on this sequence.
//
return(HWREG(ulBase + ADC_O_USTAT) & (1 << ulSequenceNum));
}
//*****************************************************************************
//
//! Clears the underflow condition on a sample sequence.
//!
//! \param ulBase is the base address of the ADC module.
//! \param ulSequenceNum is the sample sequence number.
//!
//! This will clear an underflow condition on one of the sample sequences. The
//! underflow condition must be cleared in order to detect a subsequent
//! underflow condition (it otherwise causes no harm).
//!
//! \return None.
//
//*****************************************************************************
void
ADCSequenceUnderflowClear(unsigned long ulBase, unsigned long ulSequenceNum)
{
//
// Check the arguments.
//
ASSERT((ulBase == ADC0_BASE) || (ulBase == ADC1_BASE));
ASSERT(ulSequenceNum < 4);
//
// Clear the underflow condition for this sequence.
//
HWREG(ulBase + ADC_O_USTAT) = 1 << ulSequenceNum;
}
//*****************************************************************************
//
//! Gets the captured data for a sample sequence.
//!
//! \param ulBase is the base address of the ADC module.
//! \param ulSequenceNum is the sample sequence number.
//! \param pulBuffer is the address where the data is stored.
//!
//! This function copies data from the specified sample sequence output FIFO to
//! a memory resident buffer. The number of samples available in the hardware
//! FIFO are copied into the buffer, which is assumed to be large enough to
//! hold that many samples. This will only return the samples that are
//! presently available, which may not be the entire sample sequence if it is
//! in the process of being executed.
//!
//! \return Returns the number of samples copied to the buffer.
//
//*****************************************************************************
long
ADCSequenceDataGet(unsigned long ulBase, unsigned long ulSequenceNum,
unsigned long *pulBuffer)
{
unsigned long ulCount;
//
// Check the arguments.
//
ASSERT((ulBase == ADC0_BASE) || (ulBase == ADC1_BASE));
ASSERT(ulSequenceNum < 4);
//
// Get the offset of the sequence to be read.
//
ulBase += ADC_SEQ + (ADC_SEQ_STEP * ulSequenceNum);
//
// Read samples from the FIFO until it is empty.
//
ulCount = 0;
while(!(HWREG(ulBase + ADC_SSFSTAT) & ADC_SSFSTAT0_EMPTY) && (ulCount < 8))
{
//
// Read the FIFO and copy it to the destination.
//
*pulBuffer++ = HWREG(ulBase + ADC_SSFIFO);
//
// Increment the count of samples read.
//
ulCount++;
}
//
// Return the number of samples read.
//
return(ulCount);
}
//*****************************************************************************
//
//! Causes a processor trigger for a sample sequence.
//!
//! \param ulBase is the base address of the ADC module.
//! \param ulSequenceNum is the sample sequence number, with
//! \b ADC_TRIGGER_WAIT or \b ADC_TRIGGER_SIGNAL optionally ORed into it.
//!
//! This function triggers a processor-initiated sample sequence if the sample
//! sequence trigger is configured to \b ADC_TRIGGER_PROCESSOR. If
//! \b ADC_TRIGGER_WAIT is ORed into the sequence number, the
//! processor-initiated trigger is delayed until a later processor-initiated
//! trigger to a different ADC module that specifies \b ADC_TRIGGER_SIGNAL,
//! allowing multiple ADCs to start from a processor-initiated trigger in a
//! synchronous manner.
//!
//! \return None.
//
//*****************************************************************************
void
ADCProcessorTrigger(unsigned long ulBase, unsigned long ulSequenceNum)
{
//
// Check the arguments.
//
ASSERT((ulBase == ADC0_BASE) || (ulBase == ADC1_BASE));
ASSERT((ulSequenceNum & 0xf) < 4);
//
// Generate a processor trigger for this sample sequence.
//
HWREG(ulBase + ADC_O_PSSI) = ((ulSequenceNum & 0xffff0000) |
(1 << (ulSequenceNum & 0xf)));
}
//*****************************************************************************
//
//! Configures the software oversampling factor of the ADC.
//!
//! \param ulBase is the base address of the ADC module.
//! \param ulSequenceNum is the sample sequence number.
//! \param ulFactor is the number of samples to be averaged.
//!
//! This function configures the software oversampling for the ADC, which can
//! be used to provide better resolution on the sampled data. Oversampling is
//! accomplished by averaging multiple samples from the same analog input.
//! Three different oversampling rates are supported; 2x, 4x, and 8x.
//!
//! Oversampling is only supported on the sample sequencers that are more than
//! one sample in depth (that is, the fourth sample sequencer is not
//! supported). Oversampling by 2x (for example) divides the depth of the
//! sample sequencer by two; so 2x oversampling on the first sample sequencer
//! can only provide four samples per trigger. This also means that 8x
//! oversampling is only available on the first sample sequencer.
//!
//! \return None.
//
//*****************************************************************************
void
ADCSoftwareOversampleConfigure(unsigned long ulBase,
unsigned long ulSequenceNum,
unsigned long ulFactor)
{
unsigned long ulValue;
//
// Check the arguments.
//
ASSERT((ulBase == ADC0_BASE) || (ulBase == ADC1_BASE));
ASSERT(ulSequenceNum < 3);
ASSERT(((ulFactor == 2) || (ulFactor == 4) || (ulFactor == 8)) &&
((ulSequenceNum == 0) || (ulFactor != 8)));
//
// Convert the oversampling factor to a shift factor.
//
for(ulValue = 0, ulFactor >>= 1; ulFactor; ulValue++, ulFactor >>= 1)
{
}
//
// Save the sfiht factor.
//
g_pucOversampleFactor[ulSequenceNum] = ulValue;
}
//*****************************************************************************
//
//! Configures a step of the software oversampled sequencer.
//!
//! \param ulBase is the base address of the ADC module.
//! \param ulSequenceNum is the sample sequence number.
//! \param ulStep is the step to be configured.
//! \param ulConfig is the configuration of this step.
//!
//! This function configures a step of the sample sequencer when using the
//! software oversampling feature. The number of steps available depends on
//! the oversampling factor set by ADCSoftwareOversampleConfigure(). The value
//! of \e ulConfig is the same as defined for ADCSequenceStepConfigure().
//!
//! \return None.
//
//*****************************************************************************
void
ADCSoftwareOversampleStepConfigure(unsigned long ulBase,
unsigned long ulSequenceNum,
unsigned long ulStep,
unsigned long ulConfig)
{
//
// Check the arguments.
//
ASSERT((ulBase == ADC0_BASE) || (ulBase == ADC1_BASE));
ASSERT(ulSequenceNum < 3);
ASSERT(((ulSequenceNum == 0) &&
(ulStep < (8 >> g_pucOversampleFactor[ulSequenceNum]))) ||
(ulStep < (4 >> g_pucOversampleFactor[ulSequenceNum])));
//
// Get the offset of the sequence to be configured.
//
ulBase += ADC_SEQ + (ADC_SEQ_STEP * ulSequenceNum);
//
// Compute the shift for the bits that control this step.
//
ulStep *= 4 << g_pucOversampleFactor[ulSequenceNum];
//
// Loop through the hardware steps that make up this step of the software
// oversampled sequence.
//
for(ulSequenceNum = 1 << g_pucOversampleFactor[ulSequenceNum];
ulSequenceNum; ulSequenceNum--)
{
//
// Set the analog mux value for this step.
//
HWREG(ulBase + ADC_SSMUX) = ((HWREG(ulBase + ADC_SSMUX) &
~(0x0000000f << ulStep)) |
((ulConfig & 0x0f) << ulStep));
//
// Set the control value for this step.
//
HWREG(ulBase + ADC_SSCTL) = ((HWREG(ulBase + ADC_SSCTL) &
~(0x0000000f << ulStep)) |
(((ulConfig & 0xf0) >> 4) << ulStep));
if(ulSequenceNum != 1)
{
HWREG(ulBase + ADC_SSCTL) &= ~((ADC_SSCTL0_IE0 |
ADC_SSCTL0_END0) << ulStep);
}
//
// Go to the next hardware step.
//
ulStep += 4;
}
}
//*****************************************************************************
//
//! Gets the captured data for a sample sequence using software oversampling.
//!
//! \param ulBase is the base address of the ADC module.
//! \param ulSequenceNum is the sample sequence number.
//! \param pulBuffer is the address where the data is stored.
//! \param ulCount is the number of samples to be read.
//!
//! This function copies data from the specified sample sequence output FIFO to
//! a memory resident buffer with software oversampling applied. The requested
//! number of samples are copied into the data buffer; if there are not enough
//! samples in the hardware FIFO to satisfy this many oversampled data items
//! then incorrect results will be returned. It is the caller's responsibility
//! to read only the samples that are available and wait until enough data is
//! available, for example as a result of receiving an interrupt.
//!
//! \return None.
//
//*****************************************************************************
void
ADCSoftwareOversampleDataGet(unsigned long ulBase, unsigned long ulSequenceNum,
unsigned long *pulBuffer, unsigned long ulCount)
{
unsigned long ulIdx, ulAccum;
//
// Check the arguments.
//
ASSERT((ulBase == ADC0_BASE) || (ulBase == ADC1_BASE));
ASSERT(ulSequenceNum < 3);
ASSERT(((ulSequenceNum == 0) &&
(ulCount < (8 >> g_pucOversampleFactor[ulSequenceNum]))) ||
(ulCount < (4 >> g_pucOversampleFactor[ulSequenceNum])));
//
// Get the offset of the sequence to be read.
//
ulBase += ADC_SEQ + (ADC_SEQ_STEP * ulSequenceNum);
//
// Read the samples from the FIFO until it is empty.
//
while(ulCount--)
{
//
// Compute the sum of the samples.
//
ulAccum = 0;
for(ulIdx = 1 << g_pucOversampleFactor[ulSequenceNum]; ulIdx; ulIdx--)
{
//
// Read the FIFO and add it to the accumulator.
//
ulAccum += HWREG(ulBase + ADC_SSFIFO);
}
//
// Write the averaged sample to the output buffer.
//
*pulBuffer++ = ulAccum >> g_pucOversampleFactor[ulSequenceNum];
}
}
//*****************************************************************************
//
//! Configures the hardware oversampling factor of the ADC.
//!
//! \param ulBase is the base address of the ADC module.
//! \param ulFactor is the number of samples to be averaged.
//!
//! This function configures the hardware oversampling for the ADC, which can
//! be used to provide better resolution on the sampled data. Oversampling is
//! accomplished by averaging multiple samples from the same analog input. Six
//! different oversampling rates are supported; 2x, 4x, 8x, 16x, 32x, and 64x.
//! Specifying an oversampling factor of zero will disable hardware
//! oversampling.
//!
//! Hardware oversampling applies uniformly to all sample sequencers. It does
//! not reduce the depth of the sample sequencers like the software
//! oversampling APIs; each sample written into the sample sequence FIFO is a
//! fully oversampled analog input reading.
//!
//! Enabling hardware averaging increases the precision of the ADC at the cost
//! of throughput. For example, enabling 4x oversampling reduces the
//! throughput of a 250 Ksps ADC to 62.5 Ksps.
//!
//! \note Hardware oversampling is available beginning with Rev C0 of the
//! Stellaris microcontroller.
//!
//! \return None.
//
//*****************************************************************************
void
ADCHardwareOversampleConfigure(unsigned long ulBase, unsigned long ulFactor)
{
unsigned long ulValue;
//
// Check the arguments.
//
ASSERT((ulBase == ADC0_BASE) || (ulBase == ADC1_BASE));
ASSERT(((ulFactor == 0) || (ulFactor == 2) || (ulFactor == 4) ||
(ulFactor == 8) || (ulFactor == 16) || (ulFactor == 32) ||
(ulFactor == 64)));
//
// Convert the oversampling factor to a shift factor.
//
for(ulValue = 0, ulFactor >>= 1; ulFactor; ulValue++, ulFactor >>= 1)
{
}
//
// Write the shift factor to the ADC to configure the hardware oversampler.
//
HWREG(ulBase + ADC_O_SAC) = ulValue;
}
//*****************************************************************************
//
//! Configures an ADC digital comparator.
//!
//! \param ulBase is the base address of the ADC module.
//! \param ulComp is the index of the comparator to configure.
//! \param ulConfig is the configuration of the comparator.
//!
//! This function will configure a comparator. The \e ulConfig parameter is
//! the result of a logical OR operation between the \b ADC_COMP_TRIG_xxx, and
//! \b ADC_COMP_INT_xxx values.
//!
//! The \b ADC_COMP_TRIG_xxx term can take on the following values:
//!
//! - \b ADC_COMP_TRIG_NONE to never trigger PWM fault condition.
//! - \b ADC_COMP_TRIG_LOW_ALWAYS to always trigger PWM fault condition when
//! ADC output is in the low-band.
//! - \b ADC_COMP_TRIG_LOW_ONCE to trigger PWM fault condition once when ADC
//! output transitions into the low-band.
//! - \b ADC_COMP_TRIG_LOW_HALWAYS to always trigger PWM fault condition when
//! ADC output is in the low-band only if ADC output has been in the high-band
//! since the last trigger output.
//! - \b ADC_COMP_TRIG_LOW_HONCE to trigger PWM fault condition once when ADC
//! output transitions into low-band only if ADC output has been in the
//! high-band since the last trigger output.
//! - \b ADC_COMP_TRIG_MID_ALWAYS to always trigger PWM fault condition when
//! ADC output is in the mid-band.
//! - \b ADC_COMP_TRIG_MID_ONCE to trigger PWM fault condition once when ADC
//! output transitions into the mid-band.
//! - \b ADC_COMP_TRIG_HIGH_ALWAYS to always trigger PWM fault condition when
//! ADC output is in the high-band.
//! - \b ADC_COMP_TRIG_HIGH_ONCE to trigger PWM fault condition once when ADC
//! output transitions into the high-band.
//! - \b ADC_COMP_TRIG_HIGH_HALWAYS to always trigger PWM fault condition when
//! ADC output is in the high-band only if ADC output has been in the low-band
//! since the last trigger output.
//! - \b ADC_COMP_TRIG_HIGH_HONCE to trigger PWM fault condition once when ADC
//! output transitions into high-band only if ADC output has been in the
//! low-band since the last trigger output.
//!
//! The \b ADC_COMP_INT_xxx term can take on the following values:
//!
//! - \b ADC_COMP_INT_NONE to never generate ADC interrupt.
//! - \b ADC_COMP_INT_LOW_ALWAYS to always generate ADC interrupt when ADC
//! output is in the low-band.
//! - \b ADC_COMP_INT_LOW_ONCE to generate ADC interrupt once when ADC output
//! transitions into the low-band.
//! - \b ADC_COMP__INT_LOW_HALWAYS to always generate ADC interrupt when ADC
//! output is in the low-band only if ADC output has been in the high-band
//! since the last trigger output.
//! - \b ADC_COMP_INT_LOW_HONCE to generate ADC interrupt once when ADC output
//! transitions into low-band only if ADC output has been in the high-band
//! since the last trigger output.
//! - \b ADC_COMP_INT_MID_ALWAYS to always generate ADC interrupt when ADC
//! output is in the mid-band.
//! - \b ADC_COMP_INT_MID_ONCE to generate ADC interrupt once when ADC output
//! transitions into the mid-band.
//! - \b ADC_COMP_INT_HIGH_ALWAYS to always generate ADC interrupt when ADC
//! output is in the high-band.
//! - \b ADC_COMP_INT_HIGH_ONCE to generate ADC interrupt once when ADC output
//! transitions into the high-band.
//! - \b ADC_COMP_INT_HIGH_HALWAYS to always generate ADC interrupt when ADC
//! output is in the high-band only if ADC output has been in the low-band
//! since the last trigger output.
//! - \b ADC_COMP_INT_HIGH_HONCE to generate ADC interrupt once when ADC output
//! transitions into high-band only if ADC output has been in the low-band
//! since the last trigger output.
//!
//! \return None.
//
//*****************************************************************************
void
ADCComparatorConfigure(unsigned long ulBase, unsigned long ulComp,
unsigned long ulConfig)
{
//
// Check the arguments.
//
ASSERT((ulBase == ADC0_BASE) || (ulBase == ADC1_BASE));
ASSERT(ulComp < 8);
//
// Save the new setting.
//
HWREG(ulBase + ADC_O_DCCTL0 + (ulComp * 4)) = ulConfig;
}
//*****************************************************************************
//
//! Defines the ADC digital comparator regions.
//!
//! \param ulBase is the base address of the ADC module.
//! \param ulComp is the index of the comparator to configure.
//! \param ulLowRef is the reference point for the low/mid band threshold.
//! \param ulHighRef is the reference point for the mid/high band threshold.
//!
//! The ADC digital comparator operation is based on three ADC value regions:
//! - \b low-band is defined as any ADC value less than or equal to the
//! \e ulLowRef value.
//! - \b mid-band is defined as any ADC value greater than the \e ulLowRef
//! value but less than or equal to the \e ulHighRef value.
//! - \b high-band is defined as any ADC value greater than the \e ulHighRef
//! value.
//!
//! \return None.
//
//*****************************************************************************
void
ADCComparatorRegionSet(unsigned long ulBase, unsigned long ulComp,
unsigned long ulLowRef, unsigned long ulHighRef)
{
//
// Check the arguments.
//
ASSERT((ulBase == ADC0_BASE) || (ulBase == ADC1_BASE));
ASSERT(ulComp < 8);
ASSERT((ulLowRef < 1024) && (ulLowRef <= ulHighRef));
ASSERT(ulHighRef < 1024);
//
// Save the new region settings.
//
HWREG(ulBase + ADC_O_DCCMP0 + (ulComp * 4)) = (ulHighRef << 16) | ulLowRef;
}
//*****************************************************************************
//
//! Resets the current ADC digital comparator conditions.
//!
//! \param ulBase is the base address of the ADC module.
//! \param ulComp is the index of the comparator.
//! \param bTrigger is the flag to indicate reset of Trigger conditions.
//! \param bInterrupt is the flag to indicate reset of Interrupt conditions.
//!
//! Because the digital comparator uses current and previous ADC values, this
//! function is provide to allow the comparator to be reset to its initial
//! value to prevent stale data from being used when a sequence is enabled.
//!
//! \return None.
//
//*****************************************************************************
void
ADCComparatorReset(unsigned long ulBase, unsigned long ulComp,
tBoolean bTrigger, tBoolean bInterrupt)
{
unsigned long ulTemp = 0;
//
// Check the arguments.
//
ASSERT((ulBase == ADC0_BASE) || (ulBase == ADC1_BASE));
ASSERT(ulComp < 8);
//
// Set the appropriate bits to reset the trigger and/or interrupt
// comparator conditions.
//
if(bTrigger)
{
ulTemp |= (1 << (16 + ulComp));
}
if(bInterrupt)
{
ulTemp |= (1 << ulComp);
}
HWREG(ulBase + ADC_O_DCRIC) = ulTemp;
}
//*****************************************************************************
//
//! Disables a sample sequence comparator interrupt.
//!
//! \param ulBase is the base address of the ADC module.
//! \param ulSequenceNum is the sample sequence number.
//!
//! This function disables the requested sample sequence comparator interrupt.
//!
//! \return None.
//
//*****************************************************************************
void
ADCComparatorIntDisable(unsigned long ulBase, unsigned long ulSequenceNum)
{
//
// Check the arguments.
//
ASSERT((ulBase == ADC0_BASE) || (ulBase == ADC1_BASE));
ASSERT(ulSequenceNum < 4);
//
// Disable this sample sequence comparator interrupt.
//
HWREG(ulBase + ADC_O_IM) &= ~(0x10000 << ulSequenceNum);
}
//*****************************************************************************
//
//! Enables a sample sequence comparator interrupt.
//!
//! \param ulBase is the base address of the ADC module.
//! \param ulSequenceNum is the sample sequence number.
//!
//! This function enables the requested sample sequence comparator interrupt.
//!
//! \return None.
//
//*****************************************************************************
void
ADCComparatorIntEnable(unsigned long ulBase, unsigned long ulSequenceNum)
{
//
// Check the arguments.
//
ASSERT((ulBase == ADC0_BASE) || (ulBase == ADC1_BASE));
ASSERT(ulSequenceNum < 4);
//
// Enable this sample sequence interrupt.
//
HWREG(ulBase + ADC_O_IM) |= 0x10000 << ulSequenceNum;
}
//*****************************************************************************
//
//! Gets the current comparator interrupt status.
//!
//! \param ulBase is the base address of the ADC module.
//!
//! This returns the digitial comparator interrupt status bits. This status
//! is sequence agnostic.
//!
//! \return The current comparator interrupt status.
//
//*****************************************************************************
unsigned long
ADCComparatorIntStatus(unsigned long ulBase)
{
//
// Check the arguments.
//
ASSERT((ulBase == ADC0_BASE) || (ulBase == ADC1_BASE));
//
// Return the digitial comparator interrupt status.
//
return(HWREG(ulBase + ADC_O_DCISC));
}
//*****************************************************************************
//
//! Clears sample sequence comparator interrupt source.
//!
//! \param ulBase is the base address of the ADC module.
//! \param ulStatus is the bit-mapped interrupts status to clear.
//!
//! The specified interrupt status is cleared.
//!
//! \return None.
//
//*****************************************************************************
void
ADCComparatorIntClear(unsigned long ulBase, unsigned long ulStatus)
{
//
// Check the arguments.
//
ASSERT((ulBase == ADC0_BASE) || (ulBase == ADC1_BASE));
//
// Clear the interrupt.
//
HWREG(ulBase + ADC_O_DCISC) = ulStatus;
}
//*****************************************************************************
//
//! Selects the ADC reference.
//!
//! \param ulBase is the base address of the ADC module.
//! \param ulRef is the reference to use.
//!
//! The ADC reference is set as specified by \e ulRef. It must be one of
//! \b ADC_REF_INT or \b ADC_REF_EXT_3V, for internal or external reference.
//! If \b ADC_REF_INT is chosen, then an internal 3V reference is used and
//! no external reference is needed. If \b ADC_REF_EXT_3V is chosen, then a 3V
//! reference must be supplied to the AVREF pin.
//!
//! \note The ADC reference can only be selected on parts that have an external
//! reference. Consult the data sheet for your part to determine if there is
//! an external reference.
//!
//! \return None.
//
//*****************************************************************************
void
ADCReferenceSet(unsigned long ulBase, unsigned long ulRef)
{
//
// Check the arguments.
//
ASSERT((ulBase == ADC0_BASE) || (ulBase == ADC1_BASE));
ASSERT((ulRef == ADC_REF_INT) || (ulRef == ADC_REF_EXT_3V));
//
// Set the reference.
//
HWREG(ulBase + ADC_O_CTL) = (HWREG(ulBase + ADC_O_CTL) & ~ADC_CTL_VREF) |
ulRef;
}
//*****************************************************************************
//
//! Returns the current setting of the ADC reference.
//!
//! \param ulBase is the base address of the ADC module.
//!
//! Returns the value of the ADC reference setting. The returned value will be
//! one of \b ADC_REF_INT or \b ADC_REF_EXT_3V.
//!
//! \note The value returned by this function is only meaningful if used on a
//! part that is capable of using an external reference. Consult the data
//! sheet for your part to determine if it has an external reference input.
//!
//! \return The current setting of the ADC reference.
//
//*****************************************************************************
unsigned long
ADCReferenceGet(unsigned long ulBase)
{
//
// Check the arguments.
//
ASSERT((ulBase == ADC0_BASE) || (ulBase == ADC1_BASE));
//
// Return the value of the reference.
//
return(HWREG(ulBase + ADC_O_CTL) & ADC_CTL_VREF);
}
//*****************************************************************************
//
//! Sets the phase delay between a trigger and the start of a sequence.
//!
//! \param ulBase is the base address of the ADC module.
//! \param ulPhase is the phase delay, specified as one of \b ADC_PHASE_0,
//! \b ADC_PHASE_22_5, \b ADC_PHASE_45, \b ADC_PHASE_67_5, \b ADC_PHASE_90,
//! \b ADC_PHASE_112_5, \b ADC_PHASE_135, \b ADC_PHASE_157_5, \b ADC_PHASE_180,
//! \b ADC_PHASE_202_5, \b ADC_PHASE_225, \b ADC_PHASE_247_5, \b ADC_PHASE_270,
//! \b ADC_PHASE_292_5, \b ADC_PHASE_315, or \b ADC_PHASE_337_5.
//!
//! This function sets the phase delay between the detection of an ADC trigger
//! event and the start of the sample sequence. By selecting a different phase
//! delay for a pair of ADC modules (such as \b ADC_PHASE_0 and
//! \b ADC_PHASE_180) and having each ADC module sample the same analog input,
//! it is possible to increase the sampling rate of the analog input (with
//! samples N, N+2, N+4, and so on, coming from the first ADC and samples N+1,
//! N+3, N+5, and so on, coming from the second ADC). The ADC module has a
//! single phase delay that is applied to all sample sequences within that
//! module.
//!
//! \note This capability is not available on all parts.
//!
//! \return None.
//
//*****************************************************************************
void
ADCPhaseDelaySet(unsigned long ulBase, unsigned long ulPhase)
{
//
// Check the arguments.
//
ASSERT((ulBase == ADC0_BASE) || (ulBase == ADC1_BASE));
ASSERT((ulPhase == ADC_PHASE_0) || (ulPhase == ADC_PHASE_22_5) ||
(ulPhase == ADC_PHASE_45) || (ulPhase == ADC_PHASE_67_5) ||
(ulPhase == ADC_PHASE_90) || (ulPhase == ADC_PHASE_112_5) ||
(ulPhase == ADC_PHASE_135) || (ulPhase == ADC_PHASE_157_5) ||
(ulPhase == ADC_PHASE_180) || (ulPhase == ADC_PHASE_202_5) ||
(ulPhase == ADC_PHASE_225) || (ulPhase == ADC_PHASE_247_5) ||
(ulPhase == ADC_PHASE_270) || (ulPhase == ADC_PHASE_292_5) ||
(ulPhase == ADC_PHASE_315) || (ulPhase == ADC_PHASE_337_5));
//
// Set the phase delay.
//
HWREG(ulBase + ADC_O_SPC) = ulPhase;
}
//*****************************************************************************
//
//! Gets the phase delay between a trigger and the start of a sequence.
//!
//! \param ulBase is the base address of the ADC module.
//!
//! This function gets the current phase delay between the detection of an ADC
//! trigger event and the start of the sample sequence.
//!
//! \return Returns the phase delay, specified as one of \b ADC_PHASE_0,
//! \b ADC_PHASE_22_5, \b ADC_PHASE_45, \b ADC_PHASE_67_5, \b ADC_PHASE_90,
//! \b ADC_PHASE_112_5, \b ADC_PHASE_135, \b ADC_PHASE_157_5, \b ADC_PHASE_180,
//! \b ADC_PHASE_202_5, \b ADC_PHASE_225, \b ADC_PHASE_247_5, \b ADC_PHASE_270,
//! \b ADC_PHASE_292_5, \b ADC_PHASE_315, or \b ADC_PHASE_337_5.
//
//*****************************************************************************
unsigned long
ADCPhaseDelayGet(unsigned long ulBase)
{
//
// Check the arguments.
//
ASSERT((ulBase == ADC0_BASE) || (ulBase == ADC1_BASE));
//
// Return the phase delay.
//
return(HWREG(ulBase + ADC_O_SPC));
}
//*****************************************************************************
//
// Close the Doxygen group.
//! @}
//
//*****************************************************************************