519 lines
11 KiB
C
Raw Normal View History

2014-02-25 01:47:49 +08:00
/* mtst.c
Consistency tests for math functions.
To get strict rounding rules on a 386 or 68000 computer,
define SETPREC to 1.
With NTRIALS=10000, the following are typical results for
IEEE double precision arithmetic.
Consistency test of math functions.
Max and rms relative errors for 10000 random arguments.
x = cbrt( cube(x) ): max = 0.00E+00 rms = 0.00E+00
x = atan( tan(x) ): max = 2.21E-16 rms = 3.27E-17
x = sin( asin(x) ): max = 2.13E-16 rms = 2.95E-17
x = sqrt( square(x) ): max = 0.00E+00 rms = 0.00E+00
x = log( exp(x) ): max = 1.11E-16 A rms = 4.35E-18 A
x = tanh( atanh(x) ): max = 2.22E-16 rms = 2.43E-17
x = asinh( sinh(x) ): max = 2.05E-16 rms = 3.49E-18
x = acosh( cosh(x) ): max = 1.43E-15 A rms = 1.54E-17 A
x = log10( exp10(x) ): max = 5.55E-17 A rms = 1.27E-18 A
x = pow( pow(x,a),1/a ): max = 7.60E-14 rms = 1.05E-15
x = cos( acos(x) ): max = 2.22E-16 A rms = 6.90E-17 A
*/
/*
Cephes Math Library Release 2.8: June, 2000
Copyright 1984, 1987, 1988, 2000 by Stephen L. Moshier
*/
#include <stdio.h>
#include <stdlib.h>
#include "mconf.h"
#ifndef NTRIALS
#define NTRIALS 10000
#endif
/* C9X spells lgam lgamma. */
#define GLIBC2 0
#define GLIBC2r1 0
#define SETPREC 1
#define STRTST 0
#define WTRIALS (NTRIALS/5)
#if GLIBC2
double PI = 3.141592653589793238462643;
double PIO2 = 3.141592653589793238462643 * 0.5;
double MAXLOG = 7.09782712893383996732224E2;
#else
extern double PI;
extern double PIO2;
extern double MAXLOG;
#endif
extern double MINLOG;
/*
define MINLOG -170.0
define MAXLOG +170.0
define PI 3.14159265358979323846
define PIO2 1.570796326794896619
*/
#ifdef ANSIPROT
extern double fabs ( double );
extern double sqrt ( double );
extern double cbrt ( double );
extern double exp ( double );
extern double log ( double );
extern double exp10 ( double );
extern double log10 ( double );
extern double tan ( double );
extern double atan ( double );
extern double sin ( double );
extern double asin ( double );
extern double cos ( double );
extern double acos ( double );
extern double pow ( double, double );
extern double tanh ( double );
extern double atanh ( double );
extern double sinh ( double );
extern double asinh ( double x );
extern double cosh ( double );
extern double acosh ( double );
extern double gamma ( double );
extern double lgam ( double );
extern double jn ( int, double );
extern double yn ( int, double );
extern double ndtr ( double );
extern double ndtri ( double );
extern double stdtr ( int, double );
extern double stdtri ( int, double );
extern double ellpe ( double );
extern double ellpk ( double );
#else
double fabs(), sqrt(), cbrt(), exp(), log();
double exp10(), log10(), tan(), atan();
double sin(), asin(), cos(), acos(), pow();
double tanh(), atanh(), sinh(), asinh(), cosh(), acosh();
double gamma(), lgam(), jn(), yn(), ndtrl(), ndtril();
double stdtrl(), stdtril(), ellpel(), ellpkl();
#endif
#if GLIBC2
extern double lgamma (double);
extern double tgamma ( double );
#endif
#if SETPREC
int dprec();
#endif
int drand();
/* void exit(); */
/* int printf(); */
/* Provide inverses for square root and cube root: */
double square(x)
double x;
{
return( x * x );
}
double cube(x)
double x;
{
return( x * x * x );
}
/* lookup table for each function */
struct fundef
{
char *nam1; /* the function */
double (*name )();
char *nam2; /* its inverse */
double (*inv )();
int nargs; /* number of function arguments */
int tstyp; /* type code of the function */
long ctrl; /* relative error flag */
double arg1w; /* width of domain for 1st arg */
double arg1l; /* lower bound domain 1st arg */
long arg1f; /* flags, e.g. integer arg */
double arg2w; /* same info for args 2, 3, 4 */
double arg2l;
long arg2f;
/*
double arg3w;
double arg3l;
long arg3f;
double arg4w;
double arg4l;
long arg4f;
*/
};
/* fundef.ctrl bits: */
#define RELERR 1
/* fundef.tstyp test types: */
#define POWER 1
#define ELLIP 2
#define GAMMA 3
#define WRONK1 4
#define WRONK2 5
#define WRONK3 6
#define STDTR 7
/* fundef.argNf argument flag bits: */
#define INT 2
#define EXPSCAL 4
#if GLIBC2r1
#define NTESTS 12
#else
#if GLIBC2
#define NTESTS 13
#else
#define NTESTS 17
#endif
#endif
struct fundef defs[NTESTS] = {
{" cube", cube, " cbrt", cbrt, 1, 0, 1, 2002.0, -1001.0, 0,
0.0, 0.0, 0},
{" tan", tan, " atan", atan, 1, 0, 1, 0.0, 0.0, 0,
0.0, 0.0, 0},
{" asin", asin, " sin", sin, 1, 0, 1, 2.0, -1.0, 0,
0.0, 0.0, 0},
{"square", square, " sqrt", sqrt, 1, 0, 1, 170.0, -85.0, EXPSCAL,
0.0, 0.0, 0},
{" exp", exp, " log", log, 1, 0, 0, 340.0, -170.0, 0,
0.0, 0.0, 0},
{" atanh", atanh, " tanh", tanh, 1, 0, 1, 2.0, -1.0, 0,
0.0, 0.0, 0},
{" sinh", sinh, " asinh", asinh, 1, 0, 1, 340.0, 0.0, 0,
0.0, 0.0, 0},
{" cosh", cosh, " acosh", acosh, 1, 0, 0, 340.0, 0.0, 0,
0.0, 0.0, 0},
#if !GLIBC2r1
{" exp10", exp10, " log10", log10, 1, 0, 0, 340.0, -170.0, 0,
0.0, 0.0, 0},
#endif
{"pow", pow, "pow", pow, 2, POWER, 1, 21.0, 0.0, 0,
42.0, -21.0, 0},
{" acos", acos, " cos", cos, 1, 0, 0, 2.0, -1.0, 0,
0.0, 0.0, 0},
#if GLIBC2
#if !GLIBC2r1
{ "tgamma", tgamma, "lgamma", lgamma, 1, GAMMA, 0, 34.0, 0.0, 0,
0.0, 0.0, 0},
#endif
#else
{ "gamma", gamma, "lgam", lgam, 1, GAMMA, 0, 34.0, 0.0, 0,
0.0, 0.0, 0},
#endif
{ " Jn", jn, " Yn", yn, 2, WRONK1, 0, 30.0, 0.1, 0,
40.0, -20.0, INT},
#if !GLIBC2
{ " ndtr", ndtr, " ndtri", ndtri, 1, 0, 1, 10.0L, -10.0L, 0,
0.0, 0.0, 0},
{ " ndtri", ndtri, " ndtr", ndtr, 1, 0, 1, 1.0L, 0.0L, 0,
0.0, 0.0, 0},
{" ellpe", ellpe, " ellpk", ellpk, 1, ELLIP, 0, 1.0L, 0.0L, 0,
0.0, 0.0, 0},
{ "stdtr", stdtr, "stdtri", stdtri, 2, STDTR, 1, 4.0L, -2.0L, 0,
30.0, 1.0, INT},
#endif
};
static char *headrs[] = {
"x = %s( %s(x) ): ",
"x = %s( %s(x,a),1/a ): ", /* power */
"Legendre %s, %s: ", /* ellip */
"%s(x) = log(%s(x)): ", /* gamma */
"Wronksian of %s, %s: ",
"Wronksian of %s, %s: ",
"Wronksian of %s, %s: ",
"x = %s(%s(k,x) ): ", /* stdtr */
};
const static double yy1 = 0.0;
const static double y2 = 0.0;
const static double y3 = 0.0;
const static double y4 = 0.0;
const static double a = 0.0;
const static double x = 0.0;
const static double y = 0.0;
const static double z = 0.0;
const static double e = 0.0;
const static double max = 0.0;
const static double rmsa = 0.0;
const static double rms = 0.0;
const static double ave = 0.0;
int main()
{
double (*fun )();
double (*ifun )();
struct fundef *d;
int i, k, itst;
int m, ntr;
#if SETPREC
dprec(); /* set coprocessor precision */
#endif
ntr = NTRIALS;
printf( "Consistency test of math functions.\n" );
printf( "Max and rms relative errors for %d random arguments.\n",
ntr );
/* Initialize machine dependent parameters: */
defs[1].arg1w = PI;
defs[1].arg1l = -PI/2.0;
/* Microsoft C has trouble with denormal numbers. */
#if 0
defs[3].arg1w = MAXLOG;
defs[3].arg1l = -MAXLOG/2.0;
defs[4].arg1w = 2*MAXLOG;
defs[4].arg1l = -MAXLOG;
#endif
defs[6].arg1w = 2.0*MAXLOG;
defs[6].arg1l = -MAXLOG;
defs[7].arg1w = MAXLOG;
defs[7].arg1l = 0.0;
/* Outer loop, on the test number: */
for( itst=STRTST; itst<NTESTS; itst++ )
{
d = &defs[itst];
k = 0;
m = 0;
max = 0.0;
rmsa = 0.0;
ave = 0.0;
fun = d->name;
ifun = d->inv;
/* Absolute error criterion starts with gamma function
* (put all such at end of table)
*/
#if 0
if( d->tstyp == GAMMA )
printf( "Absolute error criterion (but relative if >1):\n" );
#endif
/* Smaller number of trials for Wronksians
* (put them at end of list)
*/
#if 0
if( d->tstyp == WRONK1 )
{
ntr = WTRIALS;
printf( "Absolute error and only %d trials:\n", ntr );
}
#endif
if( d->tstyp == STDTR )
{
ntr = NTRIALS/10;
printf( "Relative error and only %d trials:\n", ntr );
}
printf( headrs[d->tstyp], d->nam2, d->nam1 );
for( i=0; i<ntr; i++ )
{
m++;
/* make random number(s) in desired range(s) */
switch( d->nargs )
{
default:
goto illegn;
case 2:
drand( &a );
a = d->arg2w * ( a - 1.0 ) + d->arg2l;
if( d->arg2f & EXPSCAL )
{
a = exp(a);
drand( &y2 );
a -= 1.0e-13 * a * y2;
}
if( d->arg2f & INT )
{
k = a + 0.25;
a = k;
}
case 1:
drand( &x );
x = d->arg1w * ( x - 1.0 ) + d->arg1l;
if( d->arg1f & EXPSCAL )
{
x = exp(x);
drand( &a );
x += 1.0e-13 * x * a;
}
}
/* compute function under test */
switch( d->nargs )
{
case 1:
switch( d->tstyp )
{
case ELLIP:
yy1 = ( *(fun) )(x);
y2 = ( *(fun) )(1.0-x);
y3 = ( *(ifun) )(x);
y4 = ( *(ifun) )(1.0-x);
break;
case GAMMA:
#if GLIBC2
y = lgamma(x);
x = log( tgamma(x) );
#else
y = lgam(x);
x = log( gamma(x) );
#endif
break;
default:
z = ( *(fun) )(x);
y = ( *(ifun) )(z);
}
break;
case 2:
if( d->arg2f & INT )
{
switch( d->tstyp )
{
case WRONK1:
yy1 = (*fun)( k, x ); /* jn */
y2 = (*fun)( k+1, x );
y3 = (*ifun)( k, x ); /* yn */
y4 = (*ifun)( k+1, x );
break;
case WRONK2:
yy1 = (*fun)( a, x ); /* iv */
y2 = (*fun)( a+1.0, x );
y3 = (*ifun)( k, x ); /* kn */
y4 = (*ifun)( k+1, x );
break;
default:
z = (*fun)( k, x );
y = (*ifun)( k, z );
}
}
else
{
if( d->tstyp == POWER )
{
z = (*fun)( x, a );
y = (*ifun)( z, 1.0/a );
}
else
{
z = (*fun)( a, x );
y = (*ifun)( a, z );
}
}
break;
default:
illegn:
printf( "Illegal nargs= %d", d->nargs );
exit(1);
}
switch( d->tstyp )
{
case WRONK1:
e = (y2*y3 - yy1*y4) - 2.0/(PI*x); /* Jn, Yn */
break;
case WRONK2:
e = (y2*y3 + yy1*y4) - 1.0/x; /* In, Kn */
break;
case ELLIP:
e = (yy1-y3)*y4 + y3*y2 - PIO2;
break;
default:
e = y - x;
break;
}
if( d->ctrl & RELERR )
e /= x;
else
{
if( fabs(x) > 1.0 )
e /= x;
}
ave += e;
/* absolute value of error */
if( e < 0 )
e = -e;
/* peak detect the error */
if( e > max )
{
max = e;
if( e > 1.0e-10 )
{
printf("x %.6E z %.6E y %.6E max %.4E\n",
x, z, y, max);
if( d->tstyp == POWER )
{
printf( "a %.6E\n", a );
}
if( d->tstyp >= WRONK1 )
{
printf( "yy1 %.4E y2 %.4E y3 %.4E y4 %.4E k %d x %.4E\n",
yy1, y2, y3, y4, k, x );
}
}
/*
printf("%.8E %.8E %.4E %6ld \n", x, y, max, n);
printf("%d %.8E %.8E %.4E %6ld \n", k, x, y, max, n);
printf("%.6E %.6E %.6E %.4E %6ld \n", a, x, y, max, n);
printf("%.6E %.6E %.6E %.6E %.4E %6ld \n", a, b, x, y, max, n);
printf("%.4E %.4E %.4E %.4E %.4E %.4E %6ld \n",
a, b, c, x, y, max, n);
*/
}
/* accumulate rms error */
e *= 1.0e16; /* adjust range */
rmsa += e * e; /* accumulate the square of the error */
}
/* report after NTRIALS trials */
rms = 1.0e-16 * sqrt( rmsa/m );
if(d->ctrl & RELERR)
printf(" max = %.2E rms = %.2E\n", max, rms );
else
printf(" max = %.2E A rms = %.2E A\n", max, rms );
} /* loop on itst */
exit(0);
}