139 lines
2.6 KiB
C
139 lines
2.6 KiB
C
|
/* unity.c
|
||
|
*
|
||
|
* Relative error approximations for function arguments near
|
||
|
* unity.
|
||
|
*
|
||
|
* log1p(x) = log(1+x)
|
||
|
* expm1(x) = exp(x) - 1
|
||
|
* cosm1(x) = cos(x) - 1
|
||
|
*
|
||
|
*/
|
||
|
|
||
|
#include "mconf.h"
|
||
|
|
||
|
#ifdef ANSIPROT
|
||
|
extern int isnan (double);
|
||
|
extern int isfinite (double);
|
||
|
extern double log ( double );
|
||
|
extern double polevl ( double, void *, int );
|
||
|
extern double p1evl ( double, void *, int );
|
||
|
extern double exp ( double );
|
||
|
extern double cos ( double );
|
||
|
#else
|
||
|
double log(), polevl(), p1evl(), exp(), cos();
|
||
|
int isnan(), isfinite();
|
||
|
#endif
|
||
|
extern double INFINITY;
|
||
|
|
||
|
/* log1p(x) = log(1 + x) */
|
||
|
|
||
|
/* Coefficients for log(1+x) = x - x**2/2 + x**3 P(x)/Q(x)
|
||
|
* 1/sqrt(2) <= x < sqrt(2)
|
||
|
* Theoretical peak relative error = 2.32e-20
|
||
|
*/
|
||
|
const static double LP[] = {
|
||
|
4.5270000862445199635215E-5,
|
||
|
4.9854102823193375972212E-1,
|
||
|
6.5787325942061044846969E0,
|
||
|
2.9911919328553073277375E1,
|
||
|
6.0949667980987787057556E1,
|
||
|
5.7112963590585538103336E1,
|
||
|
2.0039553499201281259648E1,
|
||
|
};
|
||
|
const static double LQ[] = {
|
||
|
/* 1.0000000000000000000000E0,*/
|
||
|
1.5062909083469192043167E1,
|
||
|
8.3047565967967209469434E1,
|
||
|
2.2176239823732856465394E2,
|
||
|
3.0909872225312059774938E2,
|
||
|
2.1642788614495947685003E2,
|
||
|
6.0118660497603843919306E1,
|
||
|
};
|
||
|
|
||
|
#define SQRTH 0.70710678118654752440
|
||
|
#define SQRT2 1.41421356237309504880
|
||
|
|
||
|
double log1p(x)
|
||
|
double x;
|
||
|
{
|
||
|
double z;
|
||
|
|
||
|
z = 1.0 + x;
|
||
|
if( (z < SQRTH) || (z > SQRT2) )
|
||
|
return( log(z) );
|
||
|
z = x*x;
|
||
|
z = -0.5 * z + x * ( z * polevl( x, LP, 6 ) / p1evl( x, LQ, 6 ) );
|
||
|
return (x + z);
|
||
|
}
|
||
|
|
||
|
|
||
|
|
||
|
/* expm1(x) = exp(x) - 1 */
|
||
|
|
||
|
/* e^x = 1 + 2x P(x^2)/( Q(x^2) - P(x^2) )
|
||
|
* -0.5 <= x <= 0.5
|
||
|
*/
|
||
|
|
||
|
const static double EP[3] = {
|
||
|
1.2617719307481059087798E-4,
|
||
|
3.0299440770744196129956E-2,
|
||
|
9.9999999999999999991025E-1,
|
||
|
};
|
||
|
const static double EQ[4] = {
|
||
|
3.0019850513866445504159E-6,
|
||
|
2.5244834034968410419224E-3,
|
||
|
2.2726554820815502876593E-1,
|
||
|
2.0000000000000000000897E0,
|
||
|
};
|
||
|
|
||
|
double expm1(x)
|
||
|
double x;
|
||
|
{
|
||
|
double r, xx;
|
||
|
|
||
|
#ifdef NANS
|
||
|
if( isnan(x) )
|
||
|
return(x);
|
||
|
#endif
|
||
|
#ifdef INFINITIES
|
||
|
if( x == INFINITY )
|
||
|
return(INFINITY);
|
||
|
if( x == -INFINITY )
|
||
|
return(-1.0);
|
||
|
#endif
|
||
|
if( (x < -0.5) || (x > 0.5) )
|
||
|
return( exp(x) - 1.0 );
|
||
|
xx = x * x;
|
||
|
r = x * polevl( xx, EP, 2 );
|
||
|
r = r/( polevl( xx, EQ, 3 ) - r );
|
||
|
return (r + r);
|
||
|
}
|
||
|
|
||
|
|
||
|
|
||
|
/* cosm1(x) = cos(x) - 1 */
|
||
|
|
||
|
const static double coscof[7] = {
|
||
|
4.7377507964246204691685E-14,
|
||
|
-1.1470284843425359765671E-11,
|
||
|
2.0876754287081521758361E-9,
|
||
|
-2.7557319214999787979814E-7,
|
||
|
2.4801587301570552304991E-5,
|
||
|
-1.3888888888888872993737E-3,
|
||
|
4.1666666666666666609054E-2,
|
||
|
};
|
||
|
|
||
|
extern double PIO4;
|
||
|
|
||
|
double cosm1(x)
|
||
|
double x;
|
||
|
{
|
||
|
double xx;
|
||
|
|
||
|
if( (x < -PIO4) || (x > PIO4) )
|
||
|
return( cos(x) - 1.0 );
|
||
|
xx = x * x;
|
||
|
xx = -0.5*xx + xx * xx * polevl( xx, coscof, 6 );
|
||
|
return xx;
|
||
|
}
|