rtt-f030/bsp/lm4f232/Libraries/driverlib/interrupt.c

754 lines
25 KiB
C
Raw Normal View History

//*****************************************************************************
//
// interrupt.c - Driver for the NVIC Interrupt Controller.
//
// Copyright (c) 2005-2011 Texas Instruments Incorporated. All rights reserved.
// Software License Agreement
//
// Texas Instruments (TI) is supplying this software for use solely and
// exclusively on TI's microcontroller products. The software is owned by
// TI and/or its suppliers, and is protected under applicable copyright
// laws. You may not combine this software with "viral" open-source
// software in order to form a larger program.
//
// THIS SOFTWARE IS PROVIDED "AS IS" AND WITH ALL FAULTS.
// NO WARRANTIES, WHETHER EXPRESS, IMPLIED OR STATUTORY, INCLUDING, BUT
// NOT LIMITED TO, IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
// A PARTICULAR PURPOSE APPLY TO THIS SOFTWARE. TI SHALL NOT, UNDER ANY
// CIRCUMSTANCES, BE LIABLE FOR SPECIAL, INCIDENTAL, OR CONSEQUENTIAL
// DAMAGES, FOR ANY REASON WHATSOEVER.
//
// This is part of revision 8264 of the Stellaris Peripheral Driver Library.
//
//*****************************************************************************
//*****************************************************************************
//
//! \addtogroup interrupt_api
//! @{
//
//*****************************************************************************
#include "inc/hw_ints.h"
#include "inc/hw_nvic.h"
#include "inc/hw_types.h"
#include "driverlib/cpu.h"
#include "driverlib/debug.h"
#include "driverlib/interrupt.h"
//*****************************************************************************
//
// This is a mapping between priority grouping encodings and the number of
// preemption priority bits.
//
//*****************************************************************************
static const unsigned long g_pulPriority[] =
{
NVIC_APINT_PRIGROUP_0_8, NVIC_APINT_PRIGROUP_1_7, NVIC_APINT_PRIGROUP_2_6,
NVIC_APINT_PRIGROUP_3_5, NVIC_APINT_PRIGROUP_4_4, NVIC_APINT_PRIGROUP_5_3,
NVIC_APINT_PRIGROUP_6_2, NVIC_APINT_PRIGROUP_7_1
};
//*****************************************************************************
//
// This is a mapping between interrupt number and the register that contains
// the priority encoding for that interrupt.
//
//*****************************************************************************
static const unsigned long g_pulRegs[] =
{
0, NVIC_SYS_PRI1, NVIC_SYS_PRI2, NVIC_SYS_PRI3, NVIC_PRI0, NVIC_PRI1,
NVIC_PRI2, NVIC_PRI3, NVIC_PRI4, NVIC_PRI5, NVIC_PRI6, NVIC_PRI7,
NVIC_PRI8, NVIC_PRI9, NVIC_PRI10, NVIC_PRI11, NVIC_PRI12, NVIC_PRI13,
NVIC_PRI14, NVIC_PRI15, NVIC_PRI16, NVIC_PRI17, NVIC_PRI18, NVIC_PRI19,
NVIC_PRI20, NVIC_PRI21, NVIC_PRI22, NVIC_PRI23, NVIC_PRI24, NVIC_PRI25,
NVIC_PRI26, NVIC_PRI27, NVIC_PRI28, NVIC_PRI29, NVIC_PRI30, NVIC_PRI31,
NVIC_PRI32
};
//*****************************************************************************
//
// This is a mapping between interrupt number (for the peripheral interrupts
// only) and the register that contains the interrupt enable for that
// interrupt.
//
//*****************************************************************************
static const unsigned long g_pulEnRegs[] =
{
NVIC_EN0, NVIC_EN1, NVIC_EN2, NVIC_EN3, NVIC_EN4
};
//*****************************************************************************
//
// This is a mapping between interrupt number (for the peripheral interrupts
// only) and the register that contains the interrupt disable for that
// interrupt.
//
//*****************************************************************************
static const unsigned long g_pulDisRegs[] =
{
NVIC_DIS0, NVIC_DIS1, NVIC_DIS2, NVIC_DIS3, NVIC_DIS4
};
//*****************************************************************************
//
// This is a mapping between interrupt number (for the peripheral interrupts
// only) and the register that contains the interrupt pend for that interrupt.
//
//*****************************************************************************
static const unsigned long g_pulPendRegs[] =
{
NVIC_PEND0, NVIC_PEND1, NVIC_PEND2, NVIC_PEND3, NVIC_PEND4
};
//*****************************************************************************
//
// This is a mapping between interrupt number (for the peripheral interrupts
// only) and the register that contains the interrupt unpend for that
// interrupt.
//
//*****************************************************************************
static const unsigned long g_pulUnpendRegs[] =
{
NVIC_UNPEND0, NVIC_UNPEND1, NVIC_UNPEND2, NVIC_UNPEND3, NVIC_UNPEND4
};
//*****************************************************************************
//
//! \internal
//! The default interrupt handler.
//!
//! This is the default interrupt handler for all interrupts. It simply loops
//! forever so that the system state is preserved for observation by a
//! debugger. Since interrupts should be disabled before unregistering the
//! corresponding handler, this should never be called.
//!
//! \return None.
//
//*****************************************************************************
static void
IntDefaultHandler(void)
{
//
// Go into an infinite loop.
//
while(1)
{
}
}
//*****************************************************************************
//
// The processor vector table.
//
// This contains a list of the handlers for the various interrupt sources in
// the system. The layout of this list is defined by the hardware; assertion
// of an interrupt causes the processor to start executing directly at the
// address given in the corresponding location in this list.
//
//*****************************************************************************
#if defined(ewarm)
#pragma data_alignment=1024
static __no_init void (*g_pfnRAMVectors[NUM_INTERRUPTS])(void) @ "VTABLE";
#elif defined(sourcerygxx)
static __attribute__((section(".cs3.region-head.ram")))
void (*g_pfnRAMVectors[NUM_INTERRUPTS])(void) __attribute__ ((aligned(1024)));
#elif defined(ccs) || defined(DOXYGEN)
#pragma DATA_ALIGN(g_pfnRAMVectors, 1024)
#pragma DATA_SECTION(g_pfnRAMVectors, ".vtable")
void (*g_pfnRAMVectors[NUM_INTERRUPTS])(void);
#else
static __attribute__((section("vtable")))
void (*g_pfnRAMVectors[NUM_INTERRUPTS])(void) __attribute__ ((aligned(1024)));
#endif
//*****************************************************************************
//
//! Enables the processor interrupt.
//!
//! This function allows the processor to respond to interrupts. This function
//! does not affect the set of interrupts enabled in the interrupt controller;
//! it just gates the single interrupt from the controller to the processor.
//!
//! \note Previously, this function had no return value. As such, it was
//! possible to include <tt>interrupt.h</tt> and call this function without
//! having included <tt>hw_types.h</tt>. Now that the return is a
//! <tt>tBoolean</tt>, a compiler error occurs in this case. The solution
//! is to include <tt>hw_types.h</tt> before including <tt>interrupt.h</tt>.
//!
//! \return Returns \b true if interrupts were disabled when the function was
//! called or \b false if they were initially enabled.
//
//*****************************************************************************
tBoolean
IntMasterEnable(void)
{
//
// Enable processor interrupts.
//
return(CPUcpsie());
}
//*****************************************************************************
//
//! Disables the processor interrupt.
//!
//! This function prevents the processor from receiving interrupts. This
//! function does not affect the set of interrupts enabled in the interrupt
//! controller; it just gates the single interrupt from the controller to the
//! processor.
//!
//! \note Previously, this function had no return value. As such, it was
//! possible to include <tt>interrupt.h</tt> and call this function without
//! having included <tt>hw_types.h</tt>. Now that the return is a
//! <tt>tBoolean</tt>, a compiler error occurs in this case. The solution
//! is to include <tt>hw_types.h</tt> before including <tt>interrupt.h</tt>.
//!
//! \return Returns \b true if interrupts were already disabled when the
//! function was called or \b false if they were initially enabled.
//
//*****************************************************************************
tBoolean
IntMasterDisable(void)
{
//
// Disable processor interrupts.
//
return(CPUcpsid());
}
//*****************************************************************************
//
//! Registers a function to be called when an interrupt occurs.
//!
//! \param ulInterrupt specifies the interrupt in question.
//! \param pfnHandler is a pointer to the function to be called.
//!
//! This function is used to specify the handler function to be called when the
//! given interrupt is asserted to the processor. When the interrupt occurs,
//! if it is enabled (via IntEnable()), the handler function is called in
//! interrupt context. Because the handler function can preempt other code,
//! care must be taken to protect memory or peripherals that are accessed by
//! the handler and other non-handler code.
//!
//! \note The use of this function (directly or indirectly via a peripheral
//! driver interrupt register function) moves the interrupt vector table from
//! flash to SRAM. Therefore, care must be taken when linking the application
//! to ensure that the SRAM vector table is located at the beginning of SRAM;
//! otherwise the NVIC does not look in the correct portion of memory for the
//! vector table (it requires the vector table be on a 1 kB memory alignment).
//! Normally, the SRAM vector table is so placed via the use of linker scripts.
//! See the discussion of compile-time versus run-time interrupt handler
//! registration in the introduction to this chapter.
//!
//! \return None.
//
//*****************************************************************************
void
IntRegister(unsigned long ulInterrupt, void (*pfnHandler)(void))
{
unsigned long ulIdx, ulValue;
//
// Check the arguments.
//
ASSERT(ulInterrupt < NUM_INTERRUPTS);
//
// Make sure that the RAM vector table is correctly aligned.
//
ASSERT(((unsigned long)g_pfnRAMVectors & 0x000003ff) == 0);
//
// See if the RAM vector table has been initialized.
//
if(HWREG(NVIC_VTABLE) != (unsigned long)g_pfnRAMVectors)
{
//
// Copy the vector table from the beginning of FLASH to the RAM vector
// table.
//
ulValue = HWREG(NVIC_VTABLE);
for(ulIdx = 0; ulIdx < NUM_INTERRUPTS; ulIdx++)
{
g_pfnRAMVectors[ulIdx] = (void (*)(void))HWREG((ulIdx * 4) +
ulValue);
}
//
// Point the NVIC at the RAM vector table.
//
HWREG(NVIC_VTABLE) = (unsigned long)g_pfnRAMVectors;
}
//
// Save the interrupt handler.
//
g_pfnRAMVectors[ulInterrupt] = pfnHandler;
}
//*****************************************************************************
//
//! Unregisters the function to be called when an interrupt occurs.
//!
//! \param ulInterrupt specifies the interrupt in question.
//!
//! This function is used to indicate that no handler should be called when the
//! given interrupt is asserted to the processor. The interrupt source is
//! automatically disabled (via IntDisable()) if necessary.
//!
//! \sa IntRegister() for important information about registering interrupt
//! handlers.
//!
//! \return None.
//
//*****************************************************************************
void
IntUnregister(unsigned long ulInterrupt)
{
//
// Check the arguments.
//
ASSERT(ulInterrupt < NUM_INTERRUPTS);
//
// Reset the interrupt handler.
//
g_pfnRAMVectors[ulInterrupt] = IntDefaultHandler;
}
//*****************************************************************************
//
//! Sets the priority grouping of the interrupt controller.
//!
//! \param ulBits specifies the number of bits of preemptable priority.
//!
//! This function specifies the split between preemptable priority levels and
//! subpriority levels in the interrupt priority specification. The range of
//! the grouping values are dependent upon the hardware implementation; on
//! the Stellaris family, three bits are available for hardware interrupt
//! prioritization and therefore priority grouping values of three through
//! seven have the same effect.
//!
//! \return None.
//
//*****************************************************************************
void
IntPriorityGroupingSet(unsigned long ulBits)
{
//
// Check the arguments.
//
ASSERT(ulBits < NUM_PRIORITY);
//
// Set the priority grouping.
//
HWREG(NVIC_APINT) = NVIC_APINT_VECTKEY | g_pulPriority[ulBits];
}
//*****************************************************************************
//
//! Gets the priority grouping of the interrupt controller.
//!
//! This function returns the split between preemptable priority levels and
//! subpriority levels in the interrupt priority specification.
//!
//! \return The number of bits of preemptable priority.
//
//*****************************************************************************
unsigned long
IntPriorityGroupingGet(void)
{
unsigned long ulLoop, ulValue;
//
// Read the priority grouping.
//
ulValue = HWREG(NVIC_APINT) & NVIC_APINT_PRIGROUP_M;
//
// Loop through the priority grouping values.
//
for(ulLoop = 0; ulLoop < NUM_PRIORITY; ulLoop++)
{
//
// Stop looping if this value matches.
//
if(ulValue == g_pulPriority[ulLoop])
{
break;
}
}
//
// Return the number of priority bits.
//
return(ulLoop);
}
//*****************************************************************************
//
//! Sets the priority of an interrupt.
//!
//! \param ulInterrupt specifies the interrupt in question.
//! \param ucPriority specifies the priority of the interrupt.
//!
//! This function is used to set the priority of an interrupt. When multiple
//! interrupts are asserted simultaneously, the ones with the highest priority
//! are processed before the lower priority interrupts. Smaller numbers
//! correspond to higher interrupt priorities; priority 0 is the highest
//! interrupt priority.
//!
//! The hardware priority mechanism only looks at the upper N bits of the
//! priority level (where N is 3 for the Stellaris family), so any
//! prioritization must be performed in those bits. The remaining bits can be
//! used to sub-prioritize the interrupt sources, and may be used by the
//! hardware priority mechanism on a future part. This arrangement allows
//! priorities to migrate to different NVIC implementations without changing
//! the gross prioritization of the interrupts.
//!
//! \return None.
//
//*****************************************************************************
void
IntPrioritySet(unsigned long ulInterrupt, unsigned char ucPriority)
{
unsigned long ulTemp;
//
// Check the arguments.
//
ASSERT((ulInterrupt >= 4) && (ulInterrupt < NUM_INTERRUPTS));
//
// Set the interrupt priority.
//
ulTemp = HWREG(g_pulRegs[ulInterrupt >> 2]);
ulTemp &= ~(0xFF << (8 * (ulInterrupt & 3)));
ulTemp |= ucPriority << (8 * (ulInterrupt & 3));
HWREG(g_pulRegs[ulInterrupt >> 2]) = ulTemp;
}
//*****************************************************************************
//
//! Gets the priority of an interrupt.
//!
//! \param ulInterrupt specifies the interrupt in question.
//!
//! This function gets the priority of an interrupt. See IntPrioritySet() for
//! a definition of the priority value.
//!
//! \return Returns the interrupt priority, or -1 if an invalid interrupt was
//! specified.
//
//*****************************************************************************
long
IntPriorityGet(unsigned long ulInterrupt)
{
//
// Check the arguments.
//
ASSERT((ulInterrupt >= 4) && (ulInterrupt < NUM_INTERRUPTS));
//
// Return the interrupt priority.
//
return((HWREG(g_pulRegs[ulInterrupt >> 2]) >> (8 * (ulInterrupt & 3))) &
0xFF);
}
//*****************************************************************************
//
//! Enables an interrupt.
//!
//! \param ulInterrupt specifies the interrupt to be enabled.
//!
//! The specified interrupt is enabled in the interrupt controller. Other
//! enables for the interrupt (such as at the peripheral level) are unaffected
//! by this function.
//!
//! \return None.
//
//*****************************************************************************
void
IntEnable(unsigned long ulInterrupt)
{
//
// Check the arguments.
//
ASSERT(ulInterrupt < NUM_INTERRUPTS);
//
// Determine the interrupt to enable.
//
if(ulInterrupt == FAULT_MPU)
{
//
// Enable the MemManage interrupt.
//
HWREG(NVIC_SYS_HND_CTRL) |= NVIC_SYS_HND_CTRL_MEM;
}
else if(ulInterrupt == FAULT_BUS)
{
//
// Enable the bus fault interrupt.
//
HWREG(NVIC_SYS_HND_CTRL) |= NVIC_SYS_HND_CTRL_BUS;
}
else if(ulInterrupt == FAULT_USAGE)
{
//
// Enable the usage fault interrupt.
//
HWREG(NVIC_SYS_HND_CTRL) |= NVIC_SYS_HND_CTRL_USAGE;
}
else if(ulInterrupt == FAULT_SYSTICK)
{
//
// Enable the System Tick interrupt.
//
HWREG(NVIC_ST_CTRL) |= NVIC_ST_CTRL_INTEN;
}
else if(ulInterrupt >= 16)
{
//
// Enable the general interrupt.
//
HWREG(g_pulEnRegs[(ulInterrupt - 16) / 32]) =
1 << ((ulInterrupt - 16) & 31);
}
}
//*****************************************************************************
//
//! Disables an interrupt.
//!
//! \param ulInterrupt specifies the interrupt to be disabled.
//!
//! The specified interrupt is disabled in the interrupt controller. Other
//! enables for the interrupt (such as at the peripheral level) are unaffected
//! by this function.
//!
//! \return None.
//
//*****************************************************************************
void
IntDisable(unsigned long ulInterrupt)
{
//
// Check the arguments.
//
ASSERT(ulInterrupt < NUM_INTERRUPTS);
//
// Determine the interrupt to disable.
//
if(ulInterrupt == FAULT_MPU)
{
//
// Disable the MemManage interrupt.
//
HWREG(NVIC_SYS_HND_CTRL) &= ~(NVIC_SYS_HND_CTRL_MEM);
}
else if(ulInterrupt == FAULT_BUS)
{
//
// Disable the bus fault interrupt.
//
HWREG(NVIC_SYS_HND_CTRL) &= ~(NVIC_SYS_HND_CTRL_BUS);
}
else if(ulInterrupt == FAULT_USAGE)
{
//
// Disable the usage fault interrupt.
//
HWREG(NVIC_SYS_HND_CTRL) &= ~(NVIC_SYS_HND_CTRL_USAGE);
}
else if(ulInterrupt == FAULT_SYSTICK)
{
//
// Disable the System Tick interrupt.
//
HWREG(NVIC_ST_CTRL) &= ~(NVIC_ST_CTRL_INTEN);
}
else if(ulInterrupt >= 16)
{
//
// Disable the general interrupt.
//
HWREG(g_pulDisRegs[(ulInterrupt - 16) / 32]) =
1 << ((ulInterrupt - 16) & 31);
}
}
//*****************************************************************************
//
//! Pends an interrupt.
//!
//! \param ulInterrupt specifies the interrupt to be pended.
//!
//! The specified interrupt is pended in the interrupt controller. Pending an
//! interrupt causes the interrupt controller to execute the corresponding
//! interrupt handler at the next available time, based on the current
//! interrupt state priorities. For example, if called by a higher priority
//! interrupt handler, the specified interrupt handler is not called until
//! after the current interrupt handler has completed execution. The interrupt
//! must have been enabled for it to be called.
//!
//! \return None.
//
//*****************************************************************************
void
IntPendSet(unsigned long ulInterrupt)
{
//
// Check the arguments.
//
ASSERT(ulInterrupt < NUM_INTERRUPTS);
//
// Determine the interrupt to pend.
//
if(ulInterrupt == FAULT_NMI)
{
//
// Pend the NMI interrupt.
//
HWREG(NVIC_INT_CTRL) |= NVIC_INT_CTRL_NMI_SET;
}
else if(ulInterrupt == FAULT_PENDSV)
{
//
// Pend the PendSV interrupt.
//
HWREG(NVIC_INT_CTRL) |= NVIC_INT_CTRL_PEND_SV;
}
else if(ulInterrupt == FAULT_SYSTICK)
{
//
// Pend the SysTick interrupt.
//
HWREG(NVIC_INT_CTRL) |= NVIC_INT_CTRL_PENDSTSET;
}
else if(ulInterrupt >= 16)
{
//
// Pend the general interrupt.
//
HWREG(g_pulPendRegs[(ulInterrupt - 16) / 32]) =
1 << ((ulInterrupt - 16) & 31);
}
}
//*****************************************************************************
//
//! Unpends an interrupt.
//!
//! \param ulInterrupt specifies the interrupt to be unpended.
//!
//! The specified interrupt is unpended in the interrupt controller. Unpending
//! an interrupt causes any previously generated interrupts that have not been
//! handled yet (due to higher priority interrupts or the interrupt not having
//! been enabled yet) to be discarded.
//!
//! \return None.
//
//*****************************************************************************
void
IntPendClear(unsigned long ulInterrupt)
{
//
// Check the arguments.
//
ASSERT(ulInterrupt < NUM_INTERRUPTS);
//
// Determine the interrupt to unpend.
//
if(ulInterrupt == FAULT_PENDSV)
{
//
// Unpend the PendSV interrupt.
//
HWREG(NVIC_INT_CTRL) |= NVIC_INT_CTRL_UNPEND_SV;
}
else if(ulInterrupt == FAULT_SYSTICK)
{
//
// Unpend the SysTick interrupt.
//
HWREG(NVIC_INT_CTRL) |= NVIC_INT_CTRL_PENDSTCLR;
}
else if(ulInterrupt >= 16)
{
//
// Unpend the general interrupt.
//
HWREG(g_pulUnpendRegs[(ulInterrupt - 16) / 32]) =
1 << ((ulInterrupt - 16) & 31);
}
}
//*****************************************************************************
//
//! Sets the priority masking level
//!
//! \param ulPriorityMask is the priority level that is masked.
//!
//! This function sets the interrupt priority masking level so that all
//! interrupts at the specified or lesser priority level are masked. Masking
//! interrupts can be used to globally disable a set of interrupts with
//! priority below a predetermined threshold. A value of 0 disables priority
//! masking.
//!
//! Smaller numbers correspond to higher interrupt priorities. So for example
//! a priority level mask of 4 allows interrupts of priority level 0-3,
//! and interrupts with a numerical priority of 4 and greater are blocked.
//!
//! The hardware priority mechanism only looks at the upper N bits of the
//! priority level (where N is 3 for the Stellaris family), so any
//! prioritization must be performed in those bits.
//!
//! \return None.
//
//*****************************************************************************
void
IntPriorityMaskSet(unsigned long ulPriorityMask)
{
CPUbasepriSet(ulPriorityMask);
}
//*****************************************************************************
//
//! Gets the priority masking level
//!
//! This function gets the current setting of the interrupt priority masking
//! level. The value returned is the priority level such that all interrupts
//! of that and lesser priority are masked. A value of 0 means that priority
//! masking is disabled.
//!
//! Smaller numbers correspond to higher interrupt priorities. So for example
//! a priority level mask of 4 allows interrupts of priority level 0-3,
//! and interrupts with a numerical priority of 4 and greater are blocked.
//!
//! The hardware priority mechanism only looks at the upper N bits of the
//! priority level (where N is 3 for the Stellaris family), so any
//! prioritization must be performed in those bits.
//!
//! \return Returns the value of the interrupt priority level mask.
//
//*****************************************************************************
unsigned long
IntPriorityMaskGet(void)
{
return(CPUbasepriGet());
}
//*****************************************************************************
//
// Close the Doxygen group.
//! @}
//
//*****************************************************************************